

1 Decay Scheme

Pa-234m disintegrates 99.85 (1) % by beta minus emissions to levels in U-234 and 0.15 (1) % through isomeric transition to the Pa-234 ground state.

Le protactinium 234 métastable se désintègre par émission bêta moins vers des niveaux excités de l'uranium 234 et par transition isomérique vers le niveau fondamental du protactinium 234.

2 Nuclear Data

$T_{1/2}(^{234m}Pa)$:	$1,\!159$	(11)	min
$T_{1/2}(^{234}\text{U})$:	$2,\!455$	(6)	10^{5} a
$T_{1/2}(^{234}\text{Pa})$:	6,70	(5)	h
$Q^{-}(^{234m}Pa)$:	2269	(4)	$\mathrm{keV} + x \; \mathrm{keV} \; (x < 10)$
$Q^{IT}(^{234\mathrm{m}}\mathrm{Pa})$:	$73,\!92$	(2)	$\mathrm{keV} + x \; \mathrm{keV} \; (x < 10)$

2.1 β^- Transitions

	Energy (keV)	Probability (%)	Nature	$\lg ft$
$\beta_{0,30}^{-}$	299(4)	0,00389(22)		6,8
$\beta_{0.29}^{-1}$	332~(4)	0,0108~(3)		6,6
$\beta_{0.28}^{-1}$	358(4)	0,0452 (8)		6
$\beta_{0.27}^{$	394(4)	0,0258 (3)		6,4
$\beta_{0.26}^{}$	406(4)	0,00311 (19)		7,4
$\beta_{0.25}^{$	460(4)	0,0146(7)		6,9
$\beta_{0.24}^{$	473(4)	0,0021 (3)		7,7
$\beta_{0.23}^{\circ,}$	488(4)	0,0357~(18)		6,6
$\beta_{0.22}^{-}$	575(4)	0,0024 (3)		8
$\beta_{0.21}^{\circ,}$	602(4)	0,0061 (3)		7,6
$\beta_{0,20}^{-,}$	667(4)	0,00127 (23)		8,5
$\beta_{0.19}^{}$	677(4)	0,0249(5)		7,2
$\beta_{0.18}^{-1}$	698(4)	0,00231 (19)		8,4
$\beta_{0,17}^{-1}$	715(4)	0,0320~(6)		7,2

LNE – LNHB/CEA Ta	ble de Radionucléides
-------------------	-----------------------

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	\lgft
$\beta_{0,16}^{-}$	768(4)	0,0131~(6)		7,7
$\beta_{0,14}^{-}$	834(4)	0,0092~(11)		$7,\!9$
$\beta_{0,13}^{-}$	1032~(4)	$0,0121\ (11)$		8,2
$\beta_{0,12}^{-}$	1095~(4)	0,0046~(3)		8,7
$\beta_{0,9}^{-}$	1224~(4)	$1,006\ (13)$		6,5
$\beta_{0,4}^{-}$	1459(4)	0,945~(12)		6,8
$\beta_{0,3}^{-}$	1483(4)	$0,\!049~(3)$		8
$\beta_{0,0}^{-}$	2269(4)	97,599(24)	Allowed	$5,\!5$

2.2 Gamma Transitions and Internal Conversion Coefficients

	$\frac{\rm Energy}{\rm (keV)}$	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	$lpha_N$	$lpha_T$
$\gamma_{2,1}(\mathrm{Pa})$	< 10	0,15(1)						
$\gamma_{6,4}(U)$	41,82	0,0136(7)						
$\gamma_{1,0}(U)$	43,49(2)	1,414 (26)	E2		520 (8)	143,7(21)	38,9(6)	713(11)
$\gamma_{8,7}(U)$	62,70(1)	0,0019(6)	E1		0,320(5)	0,0791(11)	0,0209(3)	0,426(6)
$\gamma_{1,0}(Pa)$	73,92(2)	0,15(1)	(M1+E2)		7,96 (25)	1,94(7)	0,520(18)	10,6(4)
$\gamma_{2,1}(U)$	99,86(2)	0,0082(7)	E2	0.100 (0)	9,77 (14)	2,71(4)	0,736(11)	13,42(19)
$\gamma_{18,14}(U)$	135,32(8)	0,0000052(6)	[EI]	0,190(3)	0,0428(6)	0,01043(15)	0,00278(4)	0,247(4)
$\gamma_{11,8}(U)$	137,23(5)	0,000059(21)	[EI] M1+D2	0,184(3)	0,0413(6)	0,01006(15)	0,00268(4)	0,239(4)
$\gamma_{8,5}(U)$	140,1(10)	< 0,008	M1+E2	2,9(22)	1,76(25)	0,47(9)	0,127 (23)	5,3(18)
$\gamma_{20,14}(U)$	166,5(1) 185,0(4)	0,00000273(6)	[E1]	0,1179 (17)	0,0253(4)	0,00613(9)	0,001636 (23)	0,1514(22)
$\gamma_{12,8}(0)$	185,0(4)	0,00172(10)	[Eo]	0.169.(9)	0 500 (10)	0 1 2 2 (4)	0.0274(0)	0.947 (19)
$\gamma_{9,6}(U)$	195,4(6) 107.01(15)	0,00155(28)	[E2] [M1 E2]	0,103(3) 1 2 (12)	0,500(12) 0.472(22)	0,138(4) 0.122(4)	0,0374(9)	0,647 (16)
$\gamma_{14,13}(0)$	197,91(10)	0,000081(39)	$(\mathbf{F}0 + \mathbf{F}2 + \mathbf{M}1)$	1,3(12) 1 2 (12)	0,473(22) 0.472(22)	0,122(4) 0.122(4)	0,033(1)	2,0(12) 1.0(12)
$\gamma_{II,7}(0)$	203.3(10)	0,0017(8) 0.0029(5)	$M1 \perp E2 \mp M1$	1,3(12) 0.8(4)	0,475(22) 0.420(12)	0,122 (4) 0.1100 (23)	0,035(1)	1, 3 (12) 1, 4 (4)
$\gamma_{8,3}(0)$	209,9(0)	0,0023(0)	W11-112	0,0 (4)	0,420 (12)	0,1105 (25)	0,0500 (1)	1,4 (4)
$\gamma_{23,18}(0)$	203,5(4) 233.6(2)	≈ 0.00192 (10)						
$\gamma_{10,5}(U)$	235.9(3)	0.000096 (43)	[E1]	0.0532(8)	0.01067(16)	0.00258(4)	0.000689(10)	0.0673(10)
$\gamma_{9.4}(U)$	236(1)	0.074(8)	E0	0,0002 (0)	0,01000 (10)	0,00200 (-)	0,000000 (20)	0,0010 (10)
$\gamma_{13,8}(U)$	247.7(8)	0.0019(8)	[M1, E2]	0.7(7)	0.22(5)	0.056(8)	0.0151(20)	1.0(7)
$\gamma_{9,3}(U)$	258,227(3)	0,0778(8)	(E1)	0,0434(6)	0,00859(12)	0,00207(3)	0,000554 (8)	0,0548(8)
$\gamma_{11.6}(U)$	275,5(8)	0,00056(22)	[M1, E2]	0,5(5)	0,16(4)	0,039 (8)	0,0106(21)	0,8(6)
$\gamma_{10,3}(U)$	299(1)	0,00067(14)	[E1]	0,0315(5)	0,00608(10)	0,001467(24)	0,000392 (7)	0,0395(7)
$\gamma_{13,7}(U)$	311(1)	0,00054(11)	[E1]	0,0289(5)	0,00556 (9)	0,001339(22)	0,000358 (6)	0,0363(6)
$\gamma_{11,4}(U)$	316,7(1)	0,00022 (6)	[E2]	0,0677 (10)	0,0674 (10)	0,0182(3)	0,00494 (7)	0,1597 (23)
$\gamma_{24,15}(\mathrm{U})$	338,1 (8)	0,00113 (23)						
$\gamma_{11,3}(U)$	340,2(1)	0,000074 (22)	[E1]	0,0239 (4)	0,00453 (7)	0,001090 (16)	0,000292 (4)	0,0298 (5)
$\gamma_{28,17}(U)$	357,5(10)	0,00080 (17)						
$\gamma_{24,14}(U)$	362,8(10)	0,00069(15)						
$\gamma_{13,5}(U)$	387,6(8)	0,000512 (44)	[E2]	0,0463~(7)	0,0321 (5)	0,00858(14)	0,00232 (4)	0,0899(14)
$\gamma_{12,3}(U)$	387,6(8)	0,00097(15)	[224]					
$\gamma_{13,4}(U)$	427,4(2)	0,000020(5)	[EI]	0,01488(21)	0,00274(4)	0,000657(10)	0,0001758(25)	0,0185(3)
$\gamma_{14,8}(U)$	445,91(10)	0,000037(9)	[M1,E2]	0,15(12)	0,036(16)	0,009(4)	0,0024(10)	0,20(14)
$\gamma_{13,3}(U)$	450,98(10)	0,00385(16)	M1+E2	0,187(3)	0,0400(6)	0,00979(14)	0,00264(4)	0,241(4)
$\gamma_{28,15}(U)$	453,58(10)	0,00282(16)	[M1]	0,258(4)	0,0495(7)	0,01193(17)	0,00321(5)	0,324(5)
$\gamma_{22,13}(U)$	430,7 (10)	0,00095(20)		0,235(4)	0,0485 (8)	0,01171 (18)	0,00515(5)	0,318(3)
$\gamma_{17,10}(U)$	408,45(10) 475,74(10)	0,00200(12) 0.00305(17)	[M1]	0.227(4)	0.0434 (6)	0.01048(15)	0.00282 (4)	0.285 (4)
$\gamma_{28,14}(0)$	475,74(10) 485.44(7)	0,00303(17) 0,0000217(28)	[M1 F2]	0,227 (4) 0.12 (10)	0,0434(0) 0.028(13)	0,01043(13)	0,00232 (4)	0,285(4)
$\gamma_{18,10}(U)$	507.6(10)	0,0000217(28) 0.00158(15)	[111,152]	0,12(10)	0,028 (13)	0,007 (3)	0,0019 (8)	0,10 (11)
$\gamma_{19,10}(0)$	509.3(8)	0.00100(10)						
$\gamma_{20,10}(U)$	516.74(6)	0.00015(2)	(M1)	0.182(3)	0.0347(5)	0.00837(12)	0.00226(4)	0.228(4)
$\gamma_{18} q(U)$	526.16(10)	0.0000110(12)	[M1]	0.1732(25)	0.0331(5)	0.00797(12)	0.00215(3)	0.217(3)
$\gamma_{23,13}(U)$	544,14(10)	0,00349(15)	[]	, (20)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,)	0,000-00 (0)	-, (3)
$\gamma_{20.9}(U)$	557,41 (6)	0,0000098(13)	(M1)	0,1485(21)	0,0283(4)	0,00682(10)	0,00184(3)	0,186(3)
$\gamma_{25,13}(U)$	572,2(10)	0,00102 (20)	M1	0,1384(21)	0,0264(4)	0,00636 (10)	0,00171(3)	0,173(3)
,	. ,	. ,		. ,		. ,		, ,

	Energy (keV)	$\Pr_{\gamma+ce} \atop (\%)$	Multipolarity	α_K	α_L	$lpha_M$	α_N	α_T
$\gamma_{18,8}(U) \\ \gamma_{14,4}(U) \\ (U)$	581,37(10) 624,8(10)	0,000081 (9) 0,000117 (12)	[E1] [E1]	$\begin{array}{c} 0,00815 \ (12) \\ 0,00712 \ (11) \end{array}$	$0,001445 (21) \\ 0,001252 (18)$	0,000345(5) 0,000299(5)	$\begin{array}{c} 0,0000924 \ (13) \\ 0,0000800 \ (12) \end{array}$	$\begin{array}{c} 0,01006 \ (14) \\ 0,00877 \ (13) \end{array}$
$\gamma_{16,6}(U) = \gamma_{14,3}(U) = \gamma_{14,3}(U)$	649,2 (10) 649,2 (10) 655.5 (10)	0,0010(3) 0,000064(9) 0.00139(15)	[M1,E2]	0,06~(4)	0,012~(7)	0,0031 (15)	0,0008 (4)	0,08~(5)
$\gamma_{15,3}(U) \\ \gamma_{28,13}(U) \\ \gamma_{25,11}(U)$	$\begin{array}{c} 653,3 (10) \\ 671 (1) \\ 674,1 (10) \\ 683,7 (10) \end{array}$	0,00135(13) 0,0004(1) 0,00071(14) 0.00058(12)	[M1,E2] [M1] [E1]	$0,05 (4) \\ 0,0894 (13) \\ 0,00603 (9)$	$0,011 (6) \\ 0,01695 (25) \\ 0,001050 (15)$	0,0028 (14) 0,00408 (6) 0,000250 (4)	0,0008 (4) 0,001100 (16) 0,000067 (1)	$0,07 (5) \\ 0,1118 (17) \\ 0,00741 (11)$
$ \begin{array}{c} \gamma_{16,4}(U) \\ \gamma_{23,10}(U) \\ \gamma_{29,13}(U) \end{array} $	$\begin{array}{c} 691,3 \\ 695,8 \\ (10) \\ 699,28 \\ (10) \end{array}$	$\begin{array}{c} 0,00898 \\ 0,00164 \\ 0,00164 \\ (14) \\ 0,0058 \\ (3) \end{array}$, , ,	, , ,	, , , ,	, , ,	, , ,
$\gamma_{17,6}(U)$ $\gamma_{5,2}(U)$	702,26 (10) 706,20 (12) 708.5 (10)	$\begin{array}{c} 0,00721 \ (16) \\ 0,0052 \ (6) \\ < 0.00072 \end{array}$	[E1]	0,00568(8) 0.01527(22)	0,000987(14)	0,000235(4) 0,001247(10)	0,0000630(9)	0,00698(10)
$\gamma_{6,2}(U) = \gamma_{18,6}(U) = \gamma_{30,13}(U)$	719,29 (7) 732,8 (10)	< 0.00072 0.0000271 (24) 0.00130 (15)	[M1+E2]	0,01337(22) 0,05(3)	0,00489(7) 0,009(5)	0,001247 (19) 0,0023 (12)	0,0006 (3)	0,0219 (4) 0,06 (4)
$\gamma_{19,6}(U) \\ \gamma_{3,1}(U) $	$\begin{array}{c} 740,40 \ (8) \\ 743,115 \ (5) \end{array}$	0,0118 (3) 0,0946 (30)	E1	0,00518 (8)	0,000895 (13)	0,000213 (3)	0,0000571 (8)	0,00636 (9)
$\gamma_{20,6}(U) \\ \gamma_{18,4}(U) $	750,42(6) 760,84(15) 766,708(20)	0,0000184 (22) 0,0000046 (10) 0.2200 (41)	(M1) [M1] (F2)	0,0672 (10) 0,0648 (9) 0.01226 (10)	0,01272 (18) 0,01226 (18) 0,00206 (6)	0,00306(5) 0,00295(5) 0.001004(14)	$0,000825 (12) \\ 0,000795 (12) \\ 0.000271 (4)$	0,0841 (12) 0,0811 (12) 0,0187 (2)
$\gamma_{4,1}(U)$ $\gamma_{19,4}(U)$ $\gamma_{7,2}(U)$	760,708 (20) 782,05 (10) 783.7 (1)	0,3290 (41) 0,00782 (18) 0,000040 (7)	(E2)	0,01350(19) 0.01285(18)	0,00396(6) 0.00374(6)	0,001004(14) 0,000946(14)	0,000271(4) 0.000255(4)	0,0187(3) 0.0179(3)
$\gamma_{3,0}(U) = \gamma_{20,4}(U)$	786,573 (22) 792,25 (5)	0,0539(7) 0,0000106(14)	E1+M2 [M1]	$0,00467 (7) \\ 0,0582 (9)$	$0,000804 (12) \\ 0,01100 (16)$	$0,000191 (3) \\ 0,00265 (4)$	0,0000512 (8) 0,000713 (10)	0,00573(8) 0,0728(11)
$\gamma_{5,1}(U) \\ \gamma_{6,1}(U)$	806,05(10) 808,52(10)	$\begin{array}{c} 0,0062 \\ 0,00281 \\ (17) \end{array}$	[E1]	0,00447 (7)	0,000768 (11)	0,000183 (3)	0,0000489 (7)	0,00549 (8)
$\gamma_{4,0}(\mathrm{U})$ $\gamma_{21,5}(\mathrm{U})$	810,3(7) 818,6(5)	0,72 0,0010 (3) 0,0014 (4)	$\mathrm{E0}$					
$\gamma_{28,10}(U) \\ \gamma_{22,5}(U) \\ \gamma_{6,0}(U) \\ (U)$	$825,9 (2) \\844,5 (8) \\852,0 (1) \\867,2 (10)$	0,0014 (4) 0,00109 (23) 0,00707 (15) 0,00116 (16)	[E2]	0,01109 (16)	0,00302 (5)	0,000760 (11)	0,000205 (3)	0,01514 (22)
$\gamma_{28,9}(U) = \gamma_{21,3}(U) = \gamma_{7,1}(U)$	880,93 (4) 883,65 (3)	0,00392 (5) 0,00386 (5)	E2	0,01040 (15)	0,00276 (4)	0,000692 (10)	0,000187 (3)	0,01409 (20)
$\gamma_{28,8}(U) \\ \gamma_{7,0}(U)$	$\begin{array}{c} 922,13 \ (10) \\ 927,05 \ (10) \end{array}$	$\begin{array}{c} 0,01275 \ (20) \\ 0,00127 \ (13) \end{array}$	(E2)	0,00956 (14)	0,00245 (4)	0,000613 (9)	0,0001653 (24)	0,01284 (18)
$\gamma_{26,7}(U) \\ \gamma_{10,2}(U) $	936,75(100) 942,39(10)	$0,00102 (17) \\ 0,00253 (9) $	[E2]	0,00929 (13)	0,00236(4)	0,000589 (9)	0,0001587 (23)	0,01244 (18)
$\gamma_{8,1}(U)$ $\gamma_{25,5}(U)$ $\gamma_{22,2}(U)$	946,362 (16) 960,4 (10) 996.5 (20)	0,01064 (14) 0,0009 (3) 0.0059 (17)	(E1)	0,00337 (5)	0,000571 (8)	0,0001355(19)	0,0000363 (5)	0,00412 (6)
$\gamma_{9,1}(U) = \gamma_{10,1}(U)$	$\begin{array}{c} 1001,441 \ (18) \\ 1042,1 \ (1) \end{array}$	0,856(8) 0,00122(8)	E2 [E2,M1]	$0,00835(12) \\ 0,018(11)$	$0,00204 (3) \\ 0,0036 (18)$	$0,000507(8) \\ 0,0009(4)$	$0,0001367 (20) \\ 0,00023 (11)$	$0,01107 (16) \\ 0,023 (13)$
$\gamma_{28,6}(U) \\ \gamma_{28,5}(U)$	$\begin{array}{c} 1059,9 \ (8) \\ 1062,46 \ (10) \end{array}$	$\begin{array}{c} 0,00111 \ (22) \\ 0,00224 \ (9) \end{array}$						
$\gamma_{11,1}(U) \\ \gamma_{10,0}(U) \\ \gamma_{20,5}(U)$	$1082,5 (10) \\1084,84 (10) \\1121,2 (8)$	0,00094 (20) 0,00081 (40) 0.00173 (15)	(M1) $[E2]$	$\begin{array}{c} 0,0255 \ (4) \\ 0,00726 \ (11) \end{array}$	$\begin{array}{c} 0,00478 \ (7) \\ 0,001694 \ (24) \end{array}$	$0,001151 (17) \\ 0,000419 (6)$	0,000310 (5) 0,0001130 (16)	$\begin{array}{c} 0,0318 \ (5) \\ 0,00952 \ (14) \end{array}$
$\gamma_{28,3}(U) \\ \gamma_{11,0}(U)$	1125,54 (10) 1125,54 (10)	$0,00347 (9) \\ 0,00039 (9)$	[E2]	0,00681 (10)	0,001558 (22)	0,000385 (6)	0,0001036 (15)	0,00888 (13)
$\gamma_{12,0}(U) \\ \gamma_{13,1}(U)$	$\begin{array}{c} 1174,8 \ (10) \\ 1194,51 \ (3) \end{array}$	$0,00192 (19) \\ 0,01363 (18)$	E1	0,00226 (4)	0,000377 (6)	0,0000892 (13)	0,0000239 (4)	0,00277 (4)
$\gamma_{13,0}(U) \\ \gamma_{14,1}(U)$	$\begin{array}{c} 1237,93\ (10)\\ 1393,5\ (9)\end{array}$	$\begin{array}{c} 0,00529\ (11)\\ 0,0029\ (11)\end{array}$	E1 E1	$\begin{array}{c} 0,00213 \ (3) \\ 0,001743 \ (25) \end{array}$	0,000354 (5) 0,000288 (4)	$\begin{array}{c} 0,0000838 \ (12) \\ 0,0000682 \ (10) \end{array}$	0,0000225 (4) 0,0000183 (3)	$\begin{array}{c} 0,00262 \ (4) \\ 0,00221 \ (4) \end{array}$
$\gamma_{15,1}(U) \\ \gamma_{14,0}(U) \\ \gamma_{14,0}(U)$	1414,87 (10) 1435,05 (10) 1450.6 (15)	0,00229 (8) 0,00975 (16) 0,0010 (5)	$[{ m E1}]$ ${ m E1}$	$\begin{array}{c} 0,001700 \ (24) \\ 0,001660 \ (24) \end{array}$	$\begin{array}{c} 0,000281 \ (4) \\ 0,000274 \ (4) \end{array}$	$0,0000664 (10) \\ 0,0000648 (9)$	$\begin{array}{c} 0,00001780 \ (25) \\ 0,00001737 \ (25) \end{array}$	0,00217 (3) 0,00213 (3)
$\gamma_{16,1}(U) \\ \gamma_{16,0}(U) \\ \gamma_{17,1}(U)$	1459,0(15) 1501,8(20) 1511,29(10)	0,0019(5) 0,0013 0.01308(19)						
$\gamma_{18,1}(U) \\ \gamma_{19,1}(U)$	1528,42 (10) 1551,4 (10)	0,00237 (8) 0,00137 (15)	M1+E2	0,007~(4)	0,0014 (6)	0,00033 (14)	0,00009 (4)	0,009~(4)
$\gamma_{17,0}(\mathrm{U})$ $\gamma_{20,1}(\mathrm{U})$	1554,52(10) 1559,7(10)	0,00826 (14) 0,00074 (9) 0,00074 (5)	M1	0,00971 (14)	0,00181 (3)	0,000434 (7)	0,0001169 (17)	0,01228 (18)
$\gamma_{18,0}(U) \\ \gamma_{19,0}(U) \\ \gamma_{19,0}(U)$	1571,93(10) 1594,8(1) 1602.1(15)	0,00111 (8) 0,00235 (12) 0,00048 (22)	M1	0,00951(14)	0,001769(25)	0,000425(6)	0,0001145(16)	0,01204 (17)
$\gamma_{20,0}(U) \\ \gamma_{21,0}(U) \\ \gamma_{22,0}(U)$	1603,1 (15) 1668,9 (10) 1695.4 (10)	0,00048 (22) 0,00118 (6) 0,00038 (2)	(1111)	0,00902 (13)	0,001679 (24)	0,000403 (6)	0,0001086 (16)	0,01146 (17)
$\gamma_{23,1}(U)$	1739,36(10)	0,00038(2) 0,0214(3)						

	$\frac{\rm Energy}{\rm (keV)}$	$\stackrel{\mathrm{P}_{\gamma+\mathrm{ce}}}{(\%)}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_N$	$lpha_T$
$\gamma_{25,1}(U)$	1767,14 (10)	0,0084~(6)						
$\gamma_{24,0}(U)$	1798,0 (9)	0,00031 (5)						
$\gamma_{25,0}(\mathrm{U})$	1810,77(10)	0,00376(7)						
$\gamma_{26,1}(U)$	1821,58(10)	0,00089(5)						
$\gamma_{27,1}(U)$	1833, 13(10)	0,01759(23)						
$\gamma_{26,0}(U)$	1864,81 (10)	0,00120(5)						
$\gamma_{28,1}(U)$	1869,6(1)	0,00932(12)						
$\gamma_{27,0}(U)$	1876,8(1)	0,00819(14)						
$\gamma_{29,1}(U)$	1895,55(11)	0,00218 (6)						
$\gamma_{28,0}(U)$	1913,20(11)	0,00628 (9)						
$\gamma_{30,1}(U)$	1928,5(10)	0,00045(4)						
$\gamma_{29,0}(U)$	1939,01(13)	0,00285(5)						
$\gamma_{30.0}(U)$	1972,4 (8)	0,00041(4)						

3 Atomic Data

3.1 U

ω_K	:	0,970	(4)
$\bar{\omega}_L$:	0,500	(19)
n_{KL}	:	0,794	(5)

3.1.1 X Radiations

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	$94,\!666$		$62,\!47$
	$K\alpha_1$	$98,\!44$		100
	$K\beta_3$	110,421)	
	$K\beta_1$	$111,\!298$	}	$36,\!08$
	${ m K}eta_5^{\prime\prime}$	$111,\!964$	J	
	$K\beta_2$	114,407)	
	$K\beta_4$	115,012	Ş	12,34
	$\mathrm{KO}_{2,3}$	$115,\!377$	J	
$\mathbf{X}_{\mathbf{L}}$				
	$L\ell$	$11,\!6185$		
	$L\alpha$	$13,\!4382 - 13,\!6146$		
	$L\eta$	$15,\!399$		
	$L\beta$	15,7268 - 18,2061		
	$ m L\gamma$	19,5072 - 20,7141		

3.1.2 Auger Electrons

	$\frac{\rm Energy}{\rm (keV)}$	Relative probability
Auger K KLL KLX	71,776 - 80,954 88,153 - 98,429	$100 \\ 59,6$
KXY Auger L	104,51 - 115,59 5,9 - 21,6	8,88

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
eat.	(U)	5.9 - 21.6		0.523 (10)
	(11)	, ,		, , ,
e_{AK}	(U))	
	KLL VI V	71,776 - 80,954	l	0.00079.(1.4)
	KLA VVV	88,153 - 98,429	ĺ	0,00073(14)
	KΛΥ	104,51 - 115,59)	
\mathbf{e}_{AL}	(Pa)	5,9 - 20,9		0,054 (5)
$ec_{1,0 L}$	(U)	21,73 - 26,32		1,030(19)
$ec_{8,5 T}$	(U)	24,5 - $140,1$		0,0067~(23)
$ec_{1,0 M}$	(U)	37,94 - 39,94		0,285~(5)
$ec_{1,0}$ L	(Pa)	$52,\!82 - 57,\!19$		0,103~(8)
ес _{9,6} т	(U)	77,8 - 193,4		$0,00061 \ (13)$
$ec_{11,7}$ T	(U)	84,3 - 199,9		0,0011 (7)
$ec_{8,3}$ T	(U)	87,7 - 203,3		0,00167~(49)
$ec_{13,8}$ T	(U)	132,1 - 247,7		0,0010 (7)
$ec_{9,3}$ T	(U)	$142,\!625 - 258,\!218$		0,00404 (7)
ес _{11,6} т	(U)	159,9 - 275,5		0,00025~(19)
ес _{13,3} т	(U)	$335,\!38 - 450,\!97$		0,000747~(34)
ес _{28,15} т	(U)	$337,\!98 - 453,\!57$		0,00069~(4)
$ec_{22,13}$ T	(U)	341,1 - 456,7		0,000229 (48)
$ec_{28,14}$ T	(U)	360,14 - 475,73		0,000675 (38)
$ec_{25,13}$ T	(U)	456,6 - 572,2		0,000151 (30)
$ec_{3,1}$ T	(U)	627,513 - 743,106		0,000598~(21)
$ec_{4,1}$ T	(U)	$651,\!106 - 766,\!700$		0,00604 (12)
$ec_{3,0}$ T	(U)	670,971 - 786,564		0,000307~(6)
$ec_{4,0}$ T	(U)	694,4 - $789,0$		0,72
$ec_{6,0}$ T	(U)	736,3980 - 851,9915		0,0001054 (27)
$ec_{9,1 \ T}$	(U)	885,839 - 1001,432		0,00938 (16)
$\beta_{0,30}^-$	max: avg:	$\begin{array}{ccc} 299 & (4) \\ 83,0 & (13) \end{array}$	<pre>}</pre>	0,00389 (22)

		Energy			Electrons
		(ke	eV)		(per 100 disint.)
		222	(4))	
$\beta_{0,29}^-$	max:	332 93.0	(4) (13)	}	0,0108 (3)
	avg.	95,0 259	(10))	
$\beta_{0,28}^{-}$	max:		(4) (13)	}	0,0452 (8)
	may.	304	(10))	
$\beta_{0,27}^-$	avo.	112.3	(4) (13)	}	0,0258 (3)
	max.	406	(10) (4))	
$\beta_{0,26}^-$	avg:	116.0	(13)	}	0,00311 (19)
	max.	460	(4)	j	
$\beta^{-}_{0,25}$	avg:	133,3	(1) (13)	}	0,0146~(7)
2	max:	473	(4)	ĵ	
$\beta_{0,24}^-$	avg:	137,4	(14)	}	0,0021 (3)
0-	max:	488	(4)	Ì	0.00 $E = (1.0)$
$\beta_{0,23}$	avg:	$142,\!3$	(14)	}	0,0357 (18)
<i>Q</i> -	max:	575	(4)	Ì	0.0094 (9)
$\rho_{0,22}$	avg:	171,2	(14)	Ĵ	0,0024(3)
β^{-}	max:	602	(4)	l	0.0061.(2)
$\rho_{0,21}$	avg:	180,1	(14)	ſ	0,0001(3)
β^{-}	max:	667	(4)	J	0.00127(23)
$\rho_{0,20}$	avg:	202,5	(14)	ſ	0,00127 (23)
β_{-10}^{-}	max:	677	(4)	Ĵ	0.0249.(5)
$P_{0,19}$	avg:	205,8	(14)	ſ	0,0245 (0)
β_{-10}^{-}	max:	698	(4))	0.00231.(19)
~0,18	avg:	213,3	(14)	J	0,00201 (10)
$\beta_{0.17}^{-}$	max:	715	(4)	}	0.0320(6)
/* 0,17	avg:	219,2	(14)	J	0,0020 (0)
$\beta_{0.16}^{-}$	max:	768	(4)	}	0,0131 (6)
, 0,10	avg:	237,6	(15)	J	, , ,
$\beta_{0.14}^{-}$	max:	834	(4)	<pre>{</pre>	0,0092(11)
0,11	avg:	261,1	(15)	J	
$\beta_{0.13}^{-}$	max:	1032	(4)	}	0,0121(11)
- , -	avg:	333,1 1005	(13)	J	
$\beta_{0,12}^{-}$	max:	1095 256.7	(4) (15)	}	0,0046 (3)
	avg.	1994	(10))	
$\beta_{0,9}^-$	max:	405.6	(4) (16)	}	$1,006\ (13)$
	mov.	1/50	(10))	
$\beta_{0,4}^-$	avg.	496.0	(4) (16)	}	0,945~(12)
	may.	1/83	(10)	י ר	
$\beta_{0,3}^-$	avg:	505.3	(16)	}	0,049~(3)
2	max.	2269	(4)))	
$\beta_{0,0}^-$	avg:	820,5	(17)	}	97,599(24)

5 Photon Emissions

5.1 X-Ray Emissions

		$\frac{\rm Energy}{\rm (keV)}$		Photons (per 100 disint.)		
XL XK α_2 XK α_1	(U) (U) (U)	11,6185 - 20,7141 $94,666$ 98.44		0,541 (10) 0,0070 (9) 0.0112 (14)	}	$K\alpha$
$\begin{array}{c} \mathrm{XK}\beta_{3} \\ \mathrm{XK}\beta_{1} \\ \mathrm{XK}\beta_{5}^{\prime\prime} \end{array}$	(U) (U) (U)	$ 110,421 \\ 111,298 \\ 111,964 $	}	0,0040 (5))	$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}eta_2 \ \mathrm{XK}eta_4 \ \mathrm{XKO}_{2,3} \end{array}$	(U) (U) (U)	114,407 115,012 115,377	<pre>}</pre>	0,00138 (18)		$\mathbf{K}' \beta_2$
XL	(Pa)	11,3676 - 20,1126		0,0486~(25)		

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{1,0}(U)$	43,49(2)	0,00198 (2)
$\gamma_{8,7}(U)$	62,70(1)	0,0013~(4)
$\gamma_{1,0}(\text{Pa})$	73,92~(2)	0,0129 (9)
$\gamma_{2,1}(U)$	99,86~(2)	0,00057~(5)
$\gamma_{18,14}(U)$	135,32 (8)	0,0000042 (5)
$\gamma_{11,8}(U)$	$137,\!23\ (5)$	0,000048 (17)
$\gamma_{8,5}(U)$	140,1~(10)	< 0,00127
$\gamma_{20,14}(U)$	166,5(1)	0,00000237 (5)
$\gamma_{12,8}(U)$	185,0~(4)	0,00172~(15)
$\gamma_{9,6}(U)$	193,4~(8)	0,00072 (15)
$\gamma_{14,13}(U)$	$197,91\ (15)$	0,000027 (7)
$\gamma_{11,7}(U)$	199,9(10)	0,00058~(12)
$\gamma_{8,3}(U)$	203,3~(8)	0,00119 (9)
$\gamma_{23,18}(U)$	209,9(4)	0,00132~(15)
$\gamma_{10,5}(U)$	235,9~(3)	0,00009 (4)
$\gamma_{(-1,1)}(U)$	243,5(8)	0,00050 (9)
$\gamma_{13,8}(U)$	247,7(8)	0,00097~(22)
$\gamma_{9,3}(\mathrm{U})$	$258,\!227$ (3)	$0,\!0738\ (8)$
$\gamma_{11,6}(U)$	275,5(8)	0,00031~(6)
$\gamma_{10,3}(U)$	299(1)	0,00064 (13)
$\gamma_{13,7}(U)$	311 (1)	$0,00052\ (11)$
$\gamma_{11,4}(U)$	316,7~(1)	0,00019 (5)

 $^{\mathbf{234m}}_{_{91}}\mathrm{Pa}_{_{143}}$

	Energy	Photons
	(keV)	$(per \ 100 \ disint.)$
$\gamma_{24,15}(\mathrm{U})$	338,1~(8)	0,00113 (23)
$\gamma_{11,3}(U)$	340,2~(1)	0,000072 (21)
$\gamma_{28,17}(U)$	357,5~(10)	0,00080 (17)
$\gamma_{24,14}(U)$	$362,\!8\ (10)$	0,00069~(15)
$\gamma_{13,5}(U)$	$387,\! 6\ (8)$	0,00047~(4)
$\gamma_{12,3}(U)$	387,6 (8)	0,00097 (15)
$\gamma_{13,4}(U)$	427,4(2)	0,000020 (5)
$\gamma_{14,8}(U)$	445,91 (10)	0,000031(7)
$\gamma_{13,3}(U)$	450,98(10)	0,00310 (13)
$\gamma_{28,15}(U)$	453,58(10)	0,00213 (12)
$\gamma_{22,13}(U)$	456,7(10)	0,00072 (15)
$\gamma_{17,10}(\mathrm{U})$	468,43(10)	0,00206(12)
$\gamma_{28,14}(\mathrm{U})$	475,74 (10)	0,00237(13)
$\gamma_{18,10}(U)$	485,44(7)	0,0000187(17)
$\gamma_{19,10}(\mathrm{U})$	507,5(10)	0,00158(15)
$\gamma_{17,9}(U)$	509,2(8)	0,0022 (3)
$\gamma_{20,10}(U)$	516,60(6)	0,0000122(16)
$\gamma_{18,9}(U)$	526,02(10)	0,000009(1)
$\gamma_{23,13}(U)$	543,98(10)	0,00349(15)
$\gamma_{20,9}(U)$	557,24(6)	0,0000083(11)
$\gamma_{(-1,2)}(0)$	557,3(10)	0,00072(17)
$\gamma_{25,13}(U)$	572(1)	0,00087(17)
$\gamma_{18,8}(0)$	581,19(10)	0,000080(9)
$\gamma_{14,4}(0)$	624,0 (10)	0,000110(12)
$\gamma_{(-1,3)}(U)$	047,7(8)	0,00158(15)
$\gamma_{14,3}(U)$	649(1)	0,000059(8)
$\gamma_{16,6}(U)$	049(1) 655 2(10)	0,0010(3)
$\gamma_{23,11}(0)$	670.8(10)	0,00139(13) 0,00037(0)
$\gamma_{15,3}(0)$	673.0(10)	0,00037(9)
$\gamma_{28,13}(U)$	683.4(10)	0,0004 (13) 0.00058 (12)
$\gamma_{25,11}(0)$	691.0(3)	0,00038(12) 0.00898(19)
$\gamma_{16,4}(0)$	695.5(10)	0,00030(13) 0.00164(14)
$\gamma_{23,10}(U)$	699.02(10)	0.00104(14) 0.0058(3)
$\gamma_{29,13}(0)$ $\gamma_{17,6}(U)$	702.0(10)	0.00721(16)
$\gamma_{17,0}(\bigcirc)$ $\gamma_{5,2}(U)$	705.94(12)	0.0052(6)
$\gamma_{6,2}(U)$	708.2(10)	< 0.0007
$\gamma_{0,2}(0)$ $\gamma_{18.6}(U)$	719.01(7)	0.0000256 (20)
$\gamma_{30,13}(U)$	732.5(10)	0.00130(15)
$\gamma_{196}(U)$	740.10 (8)	0.0118(3)
$\gamma_{3,1}(U)$	742.813 (5)	0.094(3)
$\gamma_{20} \epsilon(U)$	750.12(6)	0.000017(2)
$\gamma_{(-1,4)}(U)$	760.3(10)	0,00158(15)
$\gamma_{18.4}(U)$	760,53 (15)	0,0000043 (9)
$\gamma_{4.1}(U)$	766,361 (20)	0.323(4)
$\gamma_{19.4}(U)$	781,75 (10)	0,00782 (18)
$\gamma_{7,2}(U)$	783,4 (1)	0,000039 (7)
$\gamma_{3,0}(U)$	786,272 (22)	0,0536 (7)

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{20,4}(\mathrm{U})$	791,94 (5)	0,0000099 (13)
$\gamma_{5,1}(U)$	$805,75\ (10)$	0,0062~(8)
$\gamma_{6,1}(U)$	808,2(1)	0,00281 (17)
$\gamma_{21,5}(U)$	818,2~(5)	0,0010 (3)
$\gamma_{28,10}(U)$	825,5~(2)	0,0014 (4)
$\gamma_{22,5}(U)$	844,1 (8)	0,00109~(23)
$\gamma_{6,0}(U)$	851,6(1)	0,00696 (15)
$\gamma_{28,9}(U)$	866, 8 (10)	$0,00116\ (16)$
$\gamma_{21,3}(U)$	880,52 (4)	0,00392~(5)
$\gamma_{7,1}(U)$	883,24 (3)	0,00381 (5)
$\gamma_{(-1,5)}(U)$	$887,29\ (100)$	0,00708 (14)
$\gamma_{28,8}(U)$	921,72 (10)	0,01275 (20)
$\gamma_{7,0}(U)$	$926,\!61$ (10)	$0,00125\ (13)$
$\gamma_{26,7}(U)$	$936,3\ (10)$	0,00102~(17)
$\gamma_{10,2}(U)$	941,96(10)	0,00250 (9)
$\gamma_{8,1}(U)$	945,961 (16)	0,01060(14)
$\gamma_{25,5}(U)$	960(1)	0,0009 (3)
$\gamma_{23,3}(U)$	996,1(20)	0,0059(17)
$\gamma_{9,1}(U)$	1001,026 (18)	0,847 (8)
$\gamma_{10,1}(U)$	1041,7(1)	0,00119 (8)
$\gamma_{28,6}(U)$	1059,4(8)	0,00111 (22)
$\gamma_{28,5}(U)$	1061,86(10)	0,00224 (9)
$\gamma_{11,1}(U)$	1081,9(10)	0,00091(19)
$\gamma_{10,0}(U)$	1084,25(10)	0,0008(4)
$\gamma_{30,5}(\mathrm{U})$	1120,6(8)	0,00173(15)
$\gamma_{28,3}(U)$	1124,93(10)	0,00347 (9)
$\gamma_{11,0}(U)$	1124,93(10)	0,00039(9)
$\gamma_{12,0}(U)$	1174,2(10)	0,00192(19)
$\gamma_{13,1}(0)$	1193,77(3)	0,01359(18)
$\gamma_{(-1,6)}(0)$	1220,37(10)	0,00091(9)
$\gamma_{13,0}(U)$	1237,28(10) 1252.0(15)	0,00528(11)
$\gamma_{(-1,7)}(U)$	1353,0(15) 1202 C (0)	0,0015(5)
$\gamma_{14,1}(U)$	1392,0 (9) 1412.80 (10)	0,0029(11)
$\gamma_{15,1}(U)$	1413,09(10) 1424,16(10)	0,00229 (8) 0.00073 (16)
$\gamma_{14,0}(U)$	1434,10(10) 1458.5(15)	0,00973(10)
$\gamma_{16,1}(U)$	1400,0(10) 1501(2)	0,0019(3)
$\gamma_{16,0}(U)$	1501(2) 1510.22(10)	0,0013 0.01308 (10)
$\gamma_{17,1}(0)$	1510,22 (10) 1527.28 (10)	0,01308(19) 0.00235(8)
$\gamma_{18,1}(0)$	1527,20(10) 1550.1(10)	0,00235(3) 0.00137(15)
$\gamma_{19,1}(0)$ $\gamma_{17,0}(U)$	1553,77,(10)	0,00137(13) 0,00826(14)
$\gamma_{17,0}(0)$	1558.4(10)	0,00020 (14) 0,00073 (9)
$\gamma_{20,1}(0)$	1500, 4(10) 1570.67(10)	0,00010(9)
$\gamma_{18,0}(0)$	1593.5(6)	0.00235(12)
$\gamma_{20,0}(U)$	1601.8(15)	0.00047(22)
$\gamma_{20,0}(U)$ $\gamma_{21,0}(U)$	1667.6(10)	0.00118(6)
$\gamma_{22,0}(U)$	$1694 \ 1 \ (10)$	0.00038(2)
$\gamma_{(-1,0)}(U)$	1720.5(15)	0,00033(15)
,(-1,0)(~)	. = = , = (= =)	-,()

	Energy (keV)	Photons (per 100 disint.)
$\gamma_{(-1,9)}(U)$	1732,2(15)	0,0019 (3)
$\gamma_{23,1}(U)$	1737,77(10)	0,0214 (3)
$\gamma_{(-1,10)}(U)$	1759,81 (10)	0,00146~(5)
$\gamma_{25,1}(U)$	1765,44 (10)	0,0084~(6)
$\gamma_{24,0}(U)$	1796,3 (9)	0,00031 (5)
$\gamma_{25,0}(U)$	$1809,05\ (10)$	0,00376~(7)
$\gamma_{26,1}(U)$	1819,69(10)	0,00089 (5)
$\gamma_{27,1}(U)$	1831, 37(10)	$0,01759\ (23)$
$\gamma_{26,0}(U)$	1863,09(10)	0,00120 (5)
$\gamma_{28,1}(U)$	1867,7(1)	0,00932 (12)
$\gamma_{27,0}(U)$	1874,9(1)	0,00819 (14)
$\gamma_{29,1}(U)$	1893,51 (11)	0,00218~(6)
$\gamma_{28,0}(U)$	1911,20(11)	0,00628 (9)
$\gamma_{30,1}(U)$	1926,5 (10)	0,00045~(4)
$\gamma_{29,0}(U)$	1937,01 (13)	0,00285 (5)
$\gamma_{30,0}(U)$	1970,3~(8)	0,00041 (4)
$\gamma_{(-1,11)}(U)$	2022,24 (12)	0,000186 (3)
$\gamma_{(-1,12)}(U)$	2041, 23 (13)	0,00011 (1)
$\gamma_{(-1,13)}(U)$	2065, 80(13)	0,00007
$\gamma_{(-1,14)}(U)$	2093, 19 (38)	0,00002
$\gamma_{(-1,15)}(U)$	$2102, 14\ (15)$	0,00006
$\gamma_{(-1,16)}(U)$	$2136,\!69\ (14)$	0,00007

6 Main Production Modes

U - 238 decay chain

7 References

- N.FEATHER, E.BRETSCHER. Proc.Roy.Soc.(London) 165A (1938) 530 (IT Branching Ratio)
- H.BRADT, P.SCHERRER. Helv.Phys.Acta 18 (1945) 405 (IT Branching Ratio)
- F.BARENDREGT, S.TOM. Physica 17 (1951) 817 (Half-life)
- W.L.ZIJP, S.TOM, G.J.SIZOO. Physica 20 (1954) 727 (Half-life)
- ONG PING HOK, J.T.VERSCHOOR, P.BORN. Physica 22 (1956) 465 (Half-life)
- J.H.FORREST, S.J.LYLE, G.R.MARTIN, J.J.MAULDEN. J.Inorg.Nucl.Chem. 15 (1960) 210 (IT Branching Ratio)
- S.BJORNHOLM, O.B.NIELSEN. Nucl.Phys. 42 (1963) 642 (Gamma ray energies, intensities and emission proba)
- A.H.WAPSTRA. Nucl.Phys. A97 (1967) 641 (Gamma ray energies and intensities)
- M.SAEKI, K.KIMURA, T.ISHIMORI. JAERI-1178 (1969) 25 (Half-life)

- R.DENIG, N.TRAUTMANN, N.KAFFRELL, G.HERRMANN. Proc. Int. Conf. Protactinium, 3rd. Schloss Elmau Germania (1969) (Half-life)
- R.GUNNINK, J.F.TINNEY. UCRL-51086 (1971) (Gamma ray energies, intensities and emission proba)
- T.E.SAMPSON. Nucl.Instrum.Methods 98 (1972) 37 (Gamma ray energies)
- J.GODART, A.GIZON. Nucl.Phys. A217 (1973) 159 (IT Branching Ratio)
- G.ARDISSON, C.MARSOL. Nuovo Cim. 28A (1975) 155 (Gamma ray energies and intensities)
- Y.Y.Chu, G.Scharff-Goldhaber. Phys.Rev. C17 (1978) 1507 (IT Branching Ratio)
- M.H.MOMENI. Nucl.Instrum.Methods 193 (1982) 185 (Gamma ray emission probabilities)
- C.E.Moss. Radiat.Eff. 94 (1986) 81 (Gamma ray emission probabilities)
- H.L.SCOTT, K.W.MARLOW. Nucl.Instrum.Methods Phys.Res. A286 (1990) 549 (Gamma ray emission probabilities)
- P.JAGAM, J.J.SIMPSON. J.Radioanal.Nucl.Chem. 166 (1992) 393 (Gamma ray emission probabilities)
- W.J.LIN, G.HARBOTTLE. J.Radioanal.Nucl.Chem. 157 (1992) 367 (Gamma ray emission probabilities)
- K.SIEMON, R.A.ESTERLUND, J.VAN AARLE, M.KNAACK, W.WESTMEIER, P.PATZELT. Appl.Radiat.Isot. 43 (1992) 873
- (Gamma ray emission probabilities)
- G.A.SUTTON, S.T.NAPIER, M.JOHN, A.TAYLOR. Sci.Total Environ. 130/131 (1993) 393 (Gamma ray emission probabilities)
- E.SCHÖNFELD, H.JANSSEN. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 527 (Atomic data)
- I.ADSLEY, J.S.BACKHOUSE, A.L.NICHOLS, J.TOOLE. Appl.Radiat.Isot. 49 (1998) 1337 (Evaluated Gamma ray emission probabilities)
- S.ANILKUMAR, N.KRISHNAN, M.C.ABANI. Appl.Radiat.Isot. 51 (1999) 725 (Gamma ray emission probabilities)
- A.C.NZURUBA. Nucl.Instrum.Methods Phys.Res. A424 (1999) 425 (Compiled data)
- Y.NIR-EL. Radiochim.Acta 88 (2000) 83
 - (Gamma ray energies and intensities)
- I.M.BAND, M.B.TRZHASKOVSKAYA, C.W.NESTOR JR., P.O.TIKKANEN, S.RAMAN. At. Data Nucl.Data Tables 81 (2002) 1 (77) (71) (71) (72)
 - (Theoretical ICC)
- G.Audi, A.H.Wapstra, C.Thibault. Nucl. Phys. A729 (2003) 129 (Q)
- H.YUCEL, H.KARADENIZ, M.A.CETINER, H.DEMIREL, S.TURHAN. J.Radioanal.Nucl.Chem. 258 (2003) 445 (Gamma ray emission probabilities)
- M.J.WOODS, S.M.COLLINS. Appl.Radiat.Isot. 60 (2004) 257 (Evaluated Half-life)
- V.B.BRUDANIN, K.YA.GROMOV, S.I.VASILIEV, A.A.KLIMENKO, A.A.SMOLNIKOV, V.I.FOMINYKH, V.G.CHUMIN. Part. and Nucl., Lett. 122 (2004) 84 (Gamma ray energies and intensities)
- F.S.AL-SALEH, AL-J.H.AL-MUKREN, M.A.FAROUK. Nucl.Instrum.Methods Phys.Res. A568 (2006) 734 (Gamma ray energies, and emission probabilities)
- E.BROWNE, J.K.TULI. Nucl.Data Sheets 108 (2007) 681 (NDS)

γ Emission intensities per 100 disintegrations

γ Emission intensities per 100 disintegrations

γ Emission intensities per 100 disintegrations

