

1 Decay Scheme

Pd-109 decays predominantly by beta- emission to the metastable state of Ag-109 which undergoes 100% IT decay (first excited state; half-life of 39.7(2) s). A full decay scheme has been proposed that encompasses Ag-109m decay to the ground state of Ag-109.

Le palladium 109 se désintègre par émissions bêta moins principalement vers le niveau excité de 39,7 s de période de l'argent 109.

2 Nuclear Data

$T_{1/2}(^{109}\text{Pd})$:	$13,\!58$	(12)	h
$T_{1/2}^{(109} \mathrm{Ag^m})$:	39,7	(2)	\mathbf{S}
$Q^{-}(^{109}\mathrm{Pd})$:	1116,1	(20)	keV

2.1 β^- Transitions

	Energy keV	$\begin{array}{c} {\rm Probability} \\ \times \ 100 \end{array}$	Nature	$\lg ft$
_	<i>.</i>			
$\beta_{0,23}^-$	17,6~(20)	0,00018 (3)	(allowed)	$6,\!22$
$\beta_{0,20}^{-}$	204,0 (22)	0,000074 (14)	1st forbidden non-unique	$9,\!87$
$\beta_{0.19}^{-}$	205,1 (20)	0,00166~(17)	allowed	8,53
$\beta_{0.16}^{-1}$	246,6(20)	0,0194~(9)	allowed	7,72
$\beta_{0,15}^{-}$	253,3 (20)	$0,00167\ (10)$	1st forbidden non-unique	8,82
$\beta_{0,14}^{-}$	304,1~(21)	0,000108~(24)	(allowed)	10,3
$\beta_{0,11}^{-}$	380,8~(20)	$0,0334\ (15)$	allowed	8,096
$\beta_{0,10}^{-}$	391,8~(20)	0,0204 (9)	(allowed)	$8,\!351$
$\beta_{0.9}$	409,1 (20)	0,00178(12)	(allowed)	$9,\!47$
$\beta_{0,7}^{-}$	414,2(20)	$0,00460\ (21)$	1st forbidden non-unique	$9,\!08$
$\beta_{0,6}^{-}$	418,3(20)	0,00016 (7)	(allowed)	$10,\!55$
$\beta_{0.4}$	700,9(20)	0,0063~(2)	1st forbidden non-unique	9,73
$\beta_{0,3}^{-}$	804,7(20)	0,0191 (22)	1st forbidden non-unique	$9,\!46$
$\beta_{0,1}^{-}$	1028,1 (20)	99,891 (3)	allowed	$6,\!134$

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	α_K	α_L	$lpha_M$	α_T
$\gamma_{2,1}(Ag)$	44.7 (1)	0.0121(15)	M1+E2	5.69(9)	2.69(5)	0.533(10)	9.00(15)
$\gamma_{10}(\text{Ag})$	88.03360 (103)	99.951(4)	E3	11.41(16)	12.06(17)	2.47(4)	26.33(40)
$\gamma_{4,3}(Ag)$	103,8 (2)	0,00097(15)	M1+E2	0,329(6)	0,0411(7)	0,00783(13)	0.379(7)
$\gamma_{14,6}(Ag)$	114,2(9)	0,000063(21)	(M1 + E2)	· · · · · ·	· · · · · ·	· · · · ·	, , , ,
$\gamma_{16,11}(Ag)$	134,2(2)	0,00132(12)	M1+E2	0,1658 (25)	0,0212 (4)	0,00404 (6)	0,192(3)
$\gamma_{16,10}(\mathrm{Ag})$	145,1(2)	0,00096 (8)	(M1 + E2)	0,1326(20)	0,01670 (25)	0,00318(5)	0,153(2)
$\gamma_{7,4}(Ag)$	286,7(3)	0,000180 (16)	M1+E2	0,0216 (3)	0,00264(4)	0,000501 (8)	0,0248(4)
$\gamma_{10,4}(\mathrm{Ag})$	309,1(3)	0,00416 (23)	(E1)	0,00591 (9)	0,000697 (10)	0,0001317 (19)	0,00677 (10)
$\gamma_{3,0}(\mathrm{Ag})$	311,4(1)	0,0320 (21)	M1+E2	0,01749~(25)	0,00213 (3)	0,000405~(6)	0,0201 (3)
$\gamma_{4,1}(\mathrm{Ag})$	327,2(2)	0,000132 (15)	E1	0,00509 (8)	0,000599 (9)	0,0001133 (17)	0,00582 (9)
$\gamma_{7,3}(\mathrm{Ag})$	390,5(2)	0,00094~(7)	M1+E2	0,00980 (14)	0,001178 (17)	0,000224 (4)	$0,01124\ (16)$
$\gamma_{9,3}(\mathrm{Ag})$	$395,\! 6 \ (3)$	0,000068 (13)	(E1)	0,00312 (5)	0,000366~(6)	0,0000692 (10)	0,00357~(5)
$\gamma_{23,6}(Ag)$	400,7~(6)	0,000063~(23)	(M1+E2)				
$\gamma_{10,3}({ m Ag})$	413,0(2)	0,0068~(7)	(E1+(M2))	0,00366~(7)	0,000442 (8)	0,0000839 (16)	0,00420 (8)
$\gamma_{4,0}(\mathrm{Ag})$	415,2(2)	0,0110~(6)	E2	0,00944 (14)	0,001257 (18)	0,000240 (4)	0,01098~(16)
$\gamma_{11,3}(\mathrm{Ag})$	423,9(2)	0,00093 (7)	E1(+M2)	0,00436 (7)	0,000536 (9)	0,0001020 (16)	0,00502 (8)
$\gamma_{15,4}(\mathrm{Ag})$	447,6(4)	0,00087~(7)	M1+E2	0,00698 (10)	0,000833 (12)	0,0001580 (23)	0,00800 (12)
$\gamma_{16,4}(\mathrm{Ag})$	454,3(3)	0,00050 (4)	${ m E1}$	0,00222 (4)	0,000259 (4)	0,0000490 (7)	0,00253 (4)
$\gamma_{20,4}({ m Ag})$	496,9(10)	0,000073 (14)	M1+E2	0,00541 (8)	0,000644 (10)	0,0001222 (18)	0,0062(1)
$\gamma_{14,3}(Ag)$	500,6(6)	0,000045(11)	(E1)	0,001756 (25)	0,000205 (3)	0,0000387~(6)	0,00201 (3)
$\gamma_{15,3}(\mathrm{Ag})$	551,4(3)	0,00065(7)	M1+E2	0,00420 (6)	0,000500 (7)	0,0000948(14)	0,00482(7)
$\gamma_{16,3}(\mathrm{Ag})$	558,1(2)	0,00250 (17)	E1(+M2)	0,00207 (4)	0,000249 (4)	0,0000473 (8)	0,00238 (4)
$\gamma_{6,2}(\mathrm{Ag})$	565,1(5)	0,000108(14)	(E2)	0,00386 (6)	0,000489 (7)	0,0000931(14)	0,00446~(7)
$\gamma_{11,2}(Ag)$	602,6(2)	0,0086(6)	E2	0,00324 (5)	0,000407~(6)	0,0000774(11)	0,00374~(6)
$\gamma_{6,1}(Ag)$	609,8(4)	0,00018(6)	(M1+E2)				
$\gamma_{10,1}(\mathrm{Ag})$	636,3(1)	0,0101(6)	(E2)	0,00281 (4)	0,000350 (5)	0,0000665(10)	0,00323(5)
$\gamma_{11,1}(Ag)$	647,3(1)	0,0252(14)	M1+E2	0.00000 (1)			
$\gamma_{7,0}(Ag)$	701,9(2)	0,00348(20)	M1+E2	0,00239(4)	0,000280(4)	0,0000531(8)	0,00273(4)
$\gamma_{9,0}(Ag)$	707,0(2)	0,00171(12)	(E1)	0,000807(12)	0,0000933(13)	0,00001762(25)	0,000921(13)
$\gamma_{10,0}(Ag)$	724,4(1)	0,00025(3)	(E1)	0,000766(11)	0,0000885(13)	0,00001672(24)	0,000874(13)
$\gamma_{16,2}(Ag)$	736,7(2)	0,00181(13)	E2	0,00193(3)	0,000236(4)	0,0000448(7)	0,00221 (4)
$\gamma_{19,2}(Ag)$	778,3(5)	0,00148(17)	M1+E2				
$\gamma_{16,1}(Ag)$	781,4(1)	0,0123(9)	M1+E2	0.000644 (0)	0 0000749 (11)	0,00001,400, (00)	0.000725 (11)
$\gamma_{23,3}(Ag)$	(87,1(3))	0,0000216(18)	(EI)	0,000644 (9)	0,0000743(11)	0,00001403(20)	0,000735(11)
$\gamma_{19,1}(Ag)$	823,0(4)	0,000181(18)	M1+E2	0.001919 (10)	0.0001509 (09)	0,0000000 (5)	0.00151(0)
$\gamma_{15,0}(Ag)$	802,8(2)	0,000148 (20)	E2	0,001313(19)	0,0001583(23)	0,0000300(5)	0,00151(2)
$\gamma_{16,0}(Ag)$	809,5(1)	0,000053 (10)	$M2(\pm E3)$	0,00372(6)	0,000453(7)	0,000862 (13)	0,00427(6)
$\gamma_{23,2}(Ag)$	900,8 (3) 1010 5 (9)	0,00008(11)					
$\gamma_{23,1}(Ag)$	1010,5(2)	0,000030 (6)					

3 Atomic Data

3.1 Ag

ω_K	:	$0,\!831$	(4)
$\bar{\omega}_L$:	$0,\!0583$	(14)
n_{KL}	:	0,964	(4)

3.1.1 X Radiations

		${ m Energy}\ { m keV}$		Relative probability
X _K				
11	$K\alpha_2$	21,9906		53
	$K\alpha_1$	22,16317		100
	$K\beta_3$	24,9118	}	
	$K\beta_1$	24,9427	}	
	$\mathrm{K}eta_5^{''}$	$25,\!146$	}	27,7
	$K\beta_2$	$25,\!4567$	}	
	$K\beta_4$	25,512	}	4,8
X_{L}				
	$\mathrm{L}\ell$	$2,\!634$		
	$L\alpha$	$2,\!978-2,\!984$		
	$\mathrm{L}\eta$	2,806		
	$\mathrm{L}eta$	$3,\!151 - 3,\!348$		
	$\mathrm{L}\gamma$	$3,\!52-3,\!75$		

3.1.2 Auger Electrons

	${ m Energy}\ { m keV}$	Relative probability
Auger K KLL KLX KXY Auger L	$egin{array}{rl} 17,79-18,69\ 20,945-22,160\ 24,079-25,507\ 1,9-3,8 \end{array}$	$100 \\ 42,5 \\ 4,52 \\ 1656$

4 Electron Emissions

		Energy keV		Electrons per 100 disint.
e_{AL}	(Ag)	1,9 -	$3,\!8$	79,5~(5)
e _{AK}	(Ag) KLL KLX KXY	17,79 - 1 20,945 - 22 24,079 - 25	8,69 2,160 5,507	7,06 (23) } } }
$ec_{1,0 T} ec_{1,0 K} ec_{1,0 L}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	62,52 - 8 62,520 84,2278 - 84	8,03 (1) ,6825	$\begin{array}{c} 96,29 \ (6) \\ 41,7 \ (4) \\ 44,1 \ (4) \end{array}$
$eta_{0,23}^{-} \ eta_{0,23}^{-}$	max: avg:	17,6 (4,5	(20) (5)	0,00018 (3)
$\beta_{0,20}^{-}$ $\beta_{0,20}^{-}$	max: avg:	204,0 (56,3	(22) (7)	0,000074(14)
$\beta_{0,19}^{-}$ $\beta_{0,19}^{-}$	max: avg:	205,1 (56,7	(20) (6)	$0,00166\ (17)$
$\beta_{0,16}^{-}$ $\beta_{0,16}^{-}$	max: avg:	246,6 (69,4	(20) (6)	0,0194~(9)
$\beta_{0,15}^{-}$ $\beta_{0,15}^{-}$	max: avg:	253,3 (71,5	(20) (6)	$0,00167\ (10)$
$\beta_{0,14}^{-}$ $\beta_{0,14}^{-}$	max: avg:	304,1 (87,7	(21) (7)	0,000108~(24)
$\beta_{0,11}^{-}$ $\beta_{0,11}^{-}$	max: avg:	380,8 (113,1	(20) (7)	$0,0334\ (15)$
$\beta_{0,10}^{-}$ $\beta_{0,10}^{-}$	max: avg:	391,8 (116,8	(20) (7)	0,0204 (9)
$\beta_{0,9}^{-}$ $\beta_{0,9}^{-}$	max: avg:	409,1 (122,8	(20) (7)	$0,00178\ (12)$
$\beta_{0,7}^{-}$ $\beta_{0,7}^{-}$	max: avg:	414,2 (124,5	(20) (7)	0,00460 (21)
$\beta_{0,6}^{-}$ $\beta_{0,6}^{-}$	max: avg:	418,3 (125,9	(20) (7)	0,00016 (7)
$\beta_{0,4}^{-}$	max: avg:	700,9 (229,7	(20) (8)	0,0063~(2)
$\beta_{0,3}^{-}$ $\beta_{0,3}^{-}$	max:	804,7 (270.3	(20) (8)	0,0191~(22)
$\beta_{0,1}^{-}$ $\beta_{0,1}^{-}$	max: avg:	1028,1 (361,0	(20) (8)	99,891 (3)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Ag)	$2,\!634 - 3,\!75$		4,92 (13)	
$\begin{array}{c} \mathrm{XK}\alpha_2\\ \mathrm{XK}\alpha_1 \end{array}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	21,9906 22,16317		$9,92\ (23)\ 18,7\ (5)$	$K\alpha$
$egin{array}{c} { m XK}eta_3\ { m XK}eta_1\ { m XK}eta_5^{\prime\prime} \end{array}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	$24,9118 \\ 24,9427 \\ 25,146$	} } }	5,18 (13)	$\mathrm{K}'eta_1$
$\begin{array}{c} \mathrm{XK}\beta_2\\ \mathrm{XK}\beta_4 \end{array}$	$\begin{array}{c} (\mathrm{Ag}) \\ (\mathrm{Ag}) \end{array}$	$25,\!4567$ $25,\!512$	} }	0,90~(4)	$\mathrm{K}'eta_2$

5.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
$\gamma_{2,1}(Ag)$	44,7(1)	0,00121 (15)
$\gamma_{1,0}(Ag)$	$88,03360\ (103)$	$3,\!66~(6)$
$\gamma_{4,3}(Ag)$	103,8~(2)	0,00070 (11)
$\gamma_{14,6}(Ag)$	114,2 (9)	0,000063~(21)
$\gamma_{16,11}(Ag)$	134,2~(2)	0,00111 (10)
$\gamma_{16,10}(Ag)$	145,1(2)	0,00083~(7)
$\gamma_{7,4}(Ag)$	286,7(3)	$0,000176\ (16)$
$\gamma_{10,4}(Ag)$	309,1~(3)	0,00413 (23)
$\gamma_{3,0}(Ag)$	311,4(1)	$0,0314\ (21)$
$\gamma_{4,1}(Ag)$	327,2~(2)	$0,000131\ (15)$
$\gamma_{7,3}(Ag)$	390,5~(2)	0,00093~(7)
$\gamma_{9,3}(Ag)$	$395,\! 6\ (3)$	0,000068 (13)
$\gamma_{23,6}(Ag)$	400,7~(6)	0,000063 (23)
$\gamma_{10,3}(Ag)$	413,0(2)	0,0068~(7)
$\gamma_{4,0}(Ag)$	415,2(2)	0,0109~(6)
$\gamma_{11,3}(Ag)$	423,9(2)	0,00093~(7)
$\gamma_{15,4}(Ag)$	447,6(4)	0,00086 (7)
$\gamma_{16,4}(Ag)$	454,3(3)	0,00050 (4)
$\gamma_{20,4}(Ag)$	496,9(10)	0,000073 (14)
$\gamma_{14,3}(Ag)$	$500,\! 6\ (6)$	$0,000045\ (11)$
$\gamma_{15,3}(Ag)$	551,4 (3)	0,00065~(7)
$\gamma_{16,3}(Ag)$	558,1(2)	0,00249 (17)
$\gamma_{6,2}(Ag)$	565,1(5)	0,000108~(14)
$\gamma_{11,2}(Ag)$	$602,\! 6(2)$	0,0086~(6)
$\gamma_{6,1}(Ag)$	609,8~(4)	0,00018~(6)
$\gamma_{10,1}(Ag)$	636,3~(1)	0,0101~(6)

	Energy keV	Photons per 100 disint.
$\begin{array}{c} \gamma_{11,1}(\mathrm{Ag}) \\ \gamma_{7,0}(\mathrm{Ag}) \\ \gamma_{9,0}(\mathrm{Ag}) \\ \gamma_{10,0}(\mathrm{Ag}) \\ \gamma_{10,0}(\mathrm{Ag}) \\ \gamma_{16,2}(\mathrm{Ag}) \\ \gamma_{16,2}(\mathrm{Ag}) \\ \gamma_{19,2}(\mathrm{Ag}) \\ \gamma_{19,2}(\mathrm{Ag}) \\ \gamma_{16,1}(\mathrm{Ag}) \\ \gamma_{23,3}(\mathrm{Ag}) \\ \gamma_{16,1}(\mathrm{Ag}) \\ \gamma_{23,3}(\mathrm{Ag}) \\ \gamma_{15,0}(\mathrm{Ag}) \\ \gamma_{15,0}(\mathrm{Ag}) \\ \gamma_{16,0}(\mathrm{Ag}) \\ \gamma_{23,2}(\mathrm{Ag}) \\ \gamma_{23,2}(\mathrm{Ag}) \\ \gamma_{23,2}(\mathrm{Ag}) \end{array}$	$\begin{array}{c} 647,3 \ (1) \\ 701,9 \ (2) \\ 707,0 \ (2) \\ 724,4 \ (1) \\ 736,7 \ (2) \\ 778,3 \ (5) \\ 781,4 \ (1) \\ 787,1 \ (3) \\ 823,0 \ (4) \\ 862,8 \ (2) \\ 869,5 \ (1) \\ 965,8 \ (3) \\ 1010 \ 5 \ (2) \end{array}$	$\begin{array}{c} 0,0252 \ (14) \\ 0,00347 \ (20) \\ 0,00171 \ (12) \\ 0,00025 \ (3) \\ 0,00181 \ (13) \\ 0,00148 \ (17) \\ 0,0123 \ (9) \\ 0,0000216 \ (18) \\ 0,000181 \ (18) \\ 0,000181 \ (18) \\ 0,000148 \ (20) \\ 0,000053 \ (16) \\ 0,000068 \ (11) \\ 0,000030 \ (6) \end{array}$

6 Main Production Modes

 $Pd - 108(n,\gamma)Pd - 109$

 $Pd-108(d,\!p)Pd-109$

- Pd 110(n,2n)Pd 109
- U 238(n,f)Pd 109

7 References

- L.W. ALVAREZ, A.C. HELMHOLZ, E. NELSON. Phys. Rev. 57 (1940) 660 (Ag109m half-life)
- A.C. HELMHOLZ. Phys. Rev. 60 (1941) 141, a11 (Ag109m half-life)
- H. BRADT, P.C. GUGELOT, O. HUBER, H. MEDICUS, P. PREISWERK, P. SCHERRER. Helv. Phys. Acta 18 (1945) 256
 - (Ag109m half-life)
- M.L. WIEDENBECK. Phys. Rev. 67 (1945) 92 (Ag109m half-life)
- H. BRADT, P.C. GUGELOT, O. HUBER, H. MEDICUS, P. PREISWERK, P. SCHERRER, R. STEFFEN. Helv. Phys. Acta 19 (1946) 218 (Ag109m half-life)
- H. BRADT, P.C. GUGELOT, O. HUBER, H. MEDICUS, P. PREISWERK, P. SCHERRER, R. STEFFEN. Helv. Phys. Acta 20 (1947) 153 (Ag109m half-life, ICC)
- E.J. WOLICKI, B. WALDMAN, W.C. MILLER. Phys. Rev. 82 (1951) 486 (Ag109m half-life)
- P. AVIGNON. J. Phys. Radium 14 (1953) 636 (ICC(88 keV))
- R.H. Nussbaum, A.H. Wapstra, N.F. Verster, H. Cerfontain. Physica 19 (1953) 385 (ICC(88 keV))
- J. MOREAU. J. Phys. Radium 15 (1954) 380 (ICC ratios (88 keV))
- R.L. MACKLIN, N.H. LAZAR, W.S. LYON. Phys. Rev. 107 (1957) 504 (88-keV gamma-ray emission probability)
- A.H. WAPSTRA, W. VAN DER EIJK. Nucl. Phys. 4 (1957) 325 (ICC(K) (88 keV))

- A.H. WAPSTRA, W. VAN DER EIJK. Erratum Nucl. Phys. 4 (1957) 695 (ICC(K) (88 keV))- G. GUEBEN, J. GOVAERTS. Inst. Interuniv. Sci. Nucleaires, Bruxelles, Monographie No. 2 (1958) (Pd109 half-life) - J.W. STARNER. Bull. Am. Phys. Soc. 4 (1959) 99, L2 (Pd109 Half-life, Gamma-ray energies and emission probabilities) - H.W. BRANDHORST JR., J.W. COBBLE. Phys. Rev. 125 (1962) 1323 (Pd109 half-life, Gamma-ray energies and emission probabilities, Beta emission probabilities) - S.F. ECCLES. Physica 28 (1962) 251 (Gamma-ray energies and emission probabilities) - V. MIDDELBOE. Mat. Fys. Medd. Dan. Vid. Selsk. 35. No. 8 (1966) (Ag109m half-life) - I.A. ABRAMS, L.L. PELEKIS. Proc 17th All-Union Conf. Nucl. Spectrosc. Struct. At. Nuclei, Kharkov (1967) 30 (Ag109m half-life) - J.L. BLACK, W. GRUHLE. Nucl. Phys. A93 (1967) 1 (Spin and Parity, Gamma-gamma coincidence) - G. BERZINS, M.E. BUNKER, J.W. STARNER. Nucl. Phys. A114 (1968) 512 (Gamma-ray energies and emission probabilities) - G. GRAEFFE, G.E. GORDON. Nucl. Phys. A107 (1968) 67 (Gamma-ray energies and emission probabilities) - W.E. BARNES, H.T. EASTERDAY. Oregon State University, Progress Report RLO-1062-681 (1968) 8 (Gamma-ray energies and emission probabilities) - W.C. SCHICK JR., W.L. TALBERT JR. Nucl. Phys. A128 (1969) 353 (Gamma-ray energies and emission probabilities) - M. BORMANN, H.H. BISSEM, E. MAGIERA, R. WARNEMUNDE. Nucl. Phys. A157 (1970) 481 (Pd109 half-life) - E. BASHANDY. Z. Physik 236 (1970) 130 (Gamma-ray energies and emission probabilities) J.L.C. FORD JR., R.L. ROBINSON, P.H. STELSON, T. TAMURA, CHEUK-YIN WONG. Nucl. Phys. A142 (1970) 525 (Spin and Parity) - R.L. ROBINSON, F.K. MCGOWAN, P.H. STELSON, W.T. MILNER. Nucl. Phys. A150 (1970) 225 (Nuclear levels, Branching ratios, Mixing ratio) - C.W. COTTRELL. Nucl. Phys. A204 (1973) 161 (Ag109m half-life) - F. EL-BEDEWI, Z. MILIGY, H. HANAFI. Acta Phys. 38 (1975) 153 (Gamma-ray energies and emission probabilities) - H.E. BOSCH, V.M. SILBERGLEIT, M. DAVIDSON, J. DAVIDSON. Can. J. Phys. 55 (1977) 175 (Spin, Mixing ratio) - J.E. GINDLER, L.E. GLENDENIN. Inorg. Nucl. Chem. Lett. 13 (1977) 95 (Pd109 half-life) - I. PROCHAZKA, T.I. KRACIKOVA, V. JAHELKOVA, Z. HONS, M. FISER, J. JURSIK. Czech. J. Phys. B28 (1978) 134 (Gamma-ray energies and emission probabilities, P(K), ICC(K)) - M.B. CHATTERJEE, B.B. BALIGA. Fizika, Zagreb 15 (1983) 273 (Gamma-ray energies and emission probabilities) - A. ABZOUZI, M.S. ANTONY, V.B. NDOCKO NDONGUE, D. OSTER. J. Radioanal. Nucl. Chem. 145 (1990) 361 (Pd109 half-life) - E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527 (XK-rays, XL-rays, Auger electrons) - E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998) (Auger electrons) - E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999) (XK-rays) - R.G. HELMER, C. VAN DER LEUN. Nucl. Instrum. Methods Phys. Res. A450 (2000) 35 (Gamma ray energies) - I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables
 - 81 (2002) 1 (Theoretical ICC)
- S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312 (Theoretical ICC)

7

- G. AUDI, A.H. WAPSTRA, C. THIBAULT. Nucl. Phys. A729 (2003) 337 (Q-value)
- J. BLACHOT. Nucl. Data Sheets 107 (2006) 355 (Nuclear levels)
- T. KIBEDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Theoretical ICC)

