

1 Decay Scheme

Zn-63 (half-life of 38.33 min) decays by 100% electron capture/beta plus to various excited levels and the ground state of Cu-63 (stable).

Le zinc 63 (38,33 min) se désintègre à 100 % par capture électronique/émission bêta plus vers plusieurs niveaux excités et le niveau fondamental du cuivre 63 (stable).

2 Nuclear Data

$T_{1/2}(^{63}\text{Zn})$:	$38,\!33$	(10)	min
$Q^{+}(^{63}\text{Zn})$:	3366,2	(15)	keV

2.1 Electron Capture Transitions

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_{M+}
$\begin{array}{c} \epsilon_{0,22} \\ \epsilon_{0,21} \\ \epsilon_{0,20} \\ \epsilon_{0,19} \\ \epsilon_{0,18} \\ \epsilon_{0,17} \\ \epsilon_{0,16} \\ \epsilon_{0,15} \\ \epsilon_{0,14} \\ \epsilon_{0,13} \\ \epsilon_{0,12} \\ \epsilon_{0,11} \\ \epsilon_{0,9} \\ \epsilon_{0,8} \end{array}$	$\begin{array}{c} 264,8 \ (16) \\ 323,6 \ (15) \\ 477,3 \ (16) \\ 508,3 \ (15) \\ 558,1 \ (15) \\ 586,0 \ (15) \\ 649,7 \ (15) \\ 669,5 \ (15) \\ 830,4 \ (15) \\ 855,1 \ (15) \\ 869,0 \ (15) \\ 1029,7 \ (15) \\ 1284,9 \ (15) \\ 1303,8 \ (15) \\ 1252,2 \ (15) \end{array}$	$\begin{array}{c} 0,0007 \ (2) \\ 0,0048 \ (8) \\ 0,0104 \ (14) \\ 0,0069 \ (12) \\ 0,0052 \ (10) \\ 0,0298 \ (21) \\ 0,0298 \ (21) \\ 0,0298 \ (21) \\ 0,0221 \ (14) \\ 0,011 \ (2) \\ 0,0247 \ (20) \\ 0,141 \ (9) \\ 0,035 \ (7) \\ 0,153 \ (13) \\ 0,0120 \ (2) \end{array}$	allowed (allowed) allowed (allowed) allowed (allowed) (allowed) (allowed) (allowed) (allowed) (allowed) (allowed) (allowed)	$\begin{array}{c} 6,89\\ 6,24\\ 6,24\\ 6,48\\ 6,68\\ 5,97\\ 5,62\\ 5,47\\ 5,33\\ 6,73\\ 6,73\\ 6,40\\ 5,79\\ 6,59\\ 5,96\\ 7,96\\ 7,96\end{array}$	0,8802 (16) 0,8814 (16) 0,8831 (16) 0,8833 (16) 0,8836 (16) 0,8837 (16) 0,8840 (16) 0,8846 (16) 0,8846 (16) 0,8846 (16) 0,8846 (16) 0,8846 (16) 0,8846 (16) 0,8846 (16) 0,8846 (16) 0,8853 (16) 0,8853 (16) 0,8852 (16)	$\begin{array}{c} 0,1020 \ (13) \\ 0,1010 \ (13) \\ 0,0996 \ (13) \\ 0,0994 \ (13) \\ 0,0992 \ (13) \\ 0,0991 \ (13) \\ 0,0988 \ (13) \\ 0,0988 \ (13) \\ 0,0984 \ (13) \\ 0,0983 \ (13) \\ 0,0983 \ (13) \\ 0,0983 \ (13) \\ 0,0980 \ (13) \\ 0,0978 \ (13) \\ 0,0978 \ (13) \\ 0,0978 \ (13) \\ 0,0978 \ (13) \\ 0,0977 \ (13) \end{array}$	$\begin{array}{c} 0,0168 \ (5) \\ 0,0166 \ (5) \\ 0,0163 \ (5) \\ 0,0163 \ (5) \\ 0,0162 \ (5) \\ 0,0162 \ (5) \\ 0,0162 \ (5) \\ 0,0161 \ (5) \\ 0,0161 \ (5) \\ 0,0161 \ (5) \\ 0,0160 \ (5) \$
$\epsilon_{0,7}$ $\epsilon_{0,5}$ $\epsilon_{0,4}$	$\begin{array}{c} 1353,3 (15) \\ 1819,2 (15) \\ 1954,0 (15) \end{array}$	$\begin{array}{c} 0,0130 \ (3) \\ 0,060 \ (7) \\ 0,42 \ (2) \end{array}$	allowed allowed	$7,00 \\ 6,65 \\ 5,87$	$\begin{array}{c} 0,8855 (10) \\ 0,8856 (16) \\ 0,8857 (16) \end{array}$	$\begin{array}{c} 0,0977 (13) \\ 0,0975 (13) \\ 0,0974 (13) \end{array}$	0,0150(5) 0,0159(5) 0,0159(5)

	Energy (keV)	Probability (%)	Nature	\lgft	P_K	P_L	P_{M+}
$ \begin{array}{c} \epsilon_{0,2} \\ \epsilon_{0,1} \\ \epsilon_{0,0} \end{array} $	$\begin{array}{c} 2404,2 \ (15) \\ 2696,3 \ (15) \\ 3366,2 \ (15) \end{array}$	$\begin{array}{c} 1,19 \ (3) \\ 0,92 \ (1) \\ 3,75 \ (5) \end{array}$	allowed allowed allowed	$5,60 \\ 5,81 \\ 5,40$	$0,8858 (16) \\ 0,8859 (16) \\ 0,8860 (16)$	$\begin{array}{c} 0,0973 \ (13) \\ 0,0972 \ (13) \\ 0,0971 \ (13) \end{array}$	$\begin{array}{c} 0,0159 \ (5) \\ 0,0159 \ (5) \\ 0,0158 \ (5) \end{array}$

2.2 β^+ Transitions

	$\frac{\rm Energy}{\rm (keV)}$	Probability (%)	Nature	$\lg ft$
$\beta_{0.9}^{+}$	262,9(15)	0,00043 (9)	(allowed)	$6,\!59$
$\beta_{0.8}^{+}$	281,8(15)	0,0025~(2)	(allowed)	$5,\!96$
$\beta_{0,7}^+$	331,3(15)	0,00039~(2)	allowed	7,06
$\beta_{0,5}^+$	797,2~(15)	0,042~(4)	allowed	$6,\!65$
$\beta_{0,4}^+$	$932,0\ (15)$	0,49~(2)	allowed	$5,\!87$
$\beta_{0,2}^+$	$1382,2\ (15)$	4,96(13)	allowed	$5,\!60$
$\beta_{0,1}^+$	$1674,3\ (15)$	7,00(2)	allowed	$5,\!81$
$\beta_{0,0}^+$	2344,2(15)	80,3~(6)	allowed	$5,\!40$

2.3 Gamma Transitions and Internal Conversion Coefficients

	Energy (keV)	$\begin{array}{c} \mathbf{P}_{\gamma+\mathrm{ce}}\\ (\%) \end{array}$	Multipolarity	α_K	$lpha_L$	$lpha_T$
$\gamma_{17,14}(\mathrm{Cu})$	244,40 (22)	0,0054 (8)	(E2)	0,0190 (3)	0,00198 (3)	0,0213 (3)
$\gamma_{3,2}(\mathrm{Cu})$	364,74(6)	0,0115 (25)	M1+0,36%E2	0,00184(3)	0,000184(3)	0,00205 (3)
$\gamma_{14,10}(\mathrm{Cu})$	443,70(12)	0,013~(4)	(M1 + 50% E2)	0,00177 (14)	0,000179(14)	0,00198~(16)
$\gamma_{4,2}(\mathrm{Cu})$	450,14(5)	0,229(16)	M1+1,3%E2	0,00114 (4)	0,000113(5)	0,00127 (5)
$\gamma_{11,6}(\mathrm{Cu})$	475,91 (13)	0,006(3)	M1+E2			
$\gamma_{8,5}(\mathrm{Cu})$	$515,\!45$ (9)	0,021 (8)	(M1+E2)			
$\gamma_{9,5}(\mathrm{Cu})$	534,32 (23)	0,005~(2)	(M1+E2)			
$\gamma_{5,2}(\mathrm{Cu})$	584,98~(6)	0,033~(4)	M1+E2			
$\gamma_{16,10}(\mathrm{Cu})$	624, 34 (13)	0,011~(4)	(E2)			
$\gamma_{1,0}(\mathrm{Cu})$	669,93 (4)	8,19(32)	M1+1,2%E2	0,000466 (7)	0,0000462 (7)	0,000519 (8)
$\gamma_{14,6}(\mathrm{Cu})$	675,20 (9)	0,015~(3)	(M1+E2)			
$\gamma_{15,7}(\mathrm{Cu})$	683,74 (17)	0,004(2)	M1+E2			
$\gamma_{4,1}(\mathrm{Cu})$	742,23 (6)	0,067~(8)	E2	0,000512 (8)	0,0000511 (8)	0,000571 (8)
$\gamma_{9,3}(\mathrm{Cu})$	754,56 (23)	0,016~(6)	M1+E2			
$\gamma_{10,3}(\mathrm{Cu})$	765,37 (11)	0,007~(3)	M1+E2			
$\gamma_{5,1}(\mathrm{Cu})$	877,07~(6)	0,003~(2)	M1+E2			
$\gamma_{6,2}(\mathrm{Cu})$	898,61 (7)	0,009(3)	M1+E2			
$\gamma_{11,4}(\mathrm{Cu})$	924,38 (13)	0,0099~(20)	M1+E2			
$\gamma_{2,0}(\mathrm{Cu})$	962,02 (3)	6,50(16)	M1+18,7%E2	0,000226 (4)	0,0000223 (4)	0,000251 (4)
$\gamma_{14,5}(\mathrm{Cu})$	988,83 (9)	0,0038~(11)	(M1+E2)			
$\gamma_{7,2}(\mathrm{Cu})$	1050, 90 (11)	0,0044~(11)	M1+E2			
$\gamma_{14,4}(\mathrm{Cu})$	$1123,\!67$ (8)	0,112(11)	M1+50%E2	0,000171 (4)	0,0000169 (4)	0,000192~(4)
$\gamma_{10,2}(\mathrm{Cu})$	1130, 11 (10)	0,013~(2)	M1+E2			
$\gamma_{15,5}(\mathrm{Cu})$	1149,66(14)	0,019~(2)	M1+E2			
$\gamma_{16,5}(\mathrm{Cu})$	1169,47(10)	0,0077~(16)	M1+E2			
$\gamma_{14,3}(\mathrm{Cu})$	1209,07 (9)	0,014(3)	(M1+E2)			
$\gamma_{17,5}(\mathrm{Cu})$	1233,23 (22)	0,0025~(8)	M1+E2			

	$\frac{\rm Energy}{\rm (keV)}$	$\begin{array}{c} P_{\gamma+ce} \\ (\%) \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_T$
$\gamma_{3.0}(\mathrm{Cu})$	1326,76(5)	0,069(4)	${ m E2}$	0,0001268 (18)	0,00001251 (18)	0,0001757 (25)
$\gamma_{7,1}(\mathrm{Cu})$	1342,99(12)	0,0025(8)	M1+E2			
$\gamma_{11,2}(\mathrm{Cu})$	1374,52(12)	0,034(2)	M1+E2			
$\gamma_{16,3}(\mathrm{Cu})$	1389,71(10)	0,043~(6)	(E2)			
$\gamma_{8,1}(\mathrm{Cu})$	1392,52 (9)	0,10(1)	(M1 + 50% E2)	0,0001098 (19)	0,00001080 (19)	0,000167 (4)
$\gamma_{4,0}(\mathrm{Cu})$	1412,16 (4)	0,74(3)	M1+36,6%E2	0,0001055 (16)	0,00001038 (15)	0,000166 (3)
$\gamma_{19,4}(\mathrm{Cu})$	1445,7(3)	0,0025~(8)	(E2)			
$\gamma_{18,3}(\mathrm{Cu})$	1481,34 (9)	0,0016~(8)	E2			
$\gamma_{5,0}(\mathrm{Cu})$	1547,00(5)	0,124~(5)	M1+13,2%E2	0,0000870 (13)	0,00000854 (13)	0,000181 (3)
$\gamma_{14,2}(\mathrm{Cu})$	$1573,\!81$ (8)	0,016~(2)	(M1+E2)			
$\gamma_{11,1}(\mathrm{Cu})$	$1666, 61 \ (13)$	0,0014~(6)	E2			
$\gamma_{(-1,1)}(\mathrm{Cu})$	$1696, 6 \ (10)$	0,002(1)				
$\gamma_{16,2}(\mathrm{Cu})$	$1754, 45 \ (9)$	0,0043~(11)	M1+E2			
$\gamma_{12,1}(\mathrm{Cu})$	1827,26 (10)	0,0042~(11)	(M1+E2)			
$\gamma_{6,0}(\mathrm{Cu})$	1860, 63 (6)	0,011 (3)	E2	0,0000646 (9)	0,00000635 (9)	0,000316 (5)
$\gamma_{14,1}(\mathrm{Cu})$	1865,90 (8)	0,0200(21)	(E2)	0,0000643 (9)	0,00000631 (9)	0,000319 (5)
$\gamma_{20,2}(\mathrm{Cu})$	1926,9 (4)	0,0053~(11)	(E2)			
$\gamma_{7,0}(\mathrm{Cu})$	2012,92 (11)	0,011~(2)	M1+E2			
$\gamma_{15,1}(\mathrm{Cu})$	2026,73 (14)	0,060(4)	M1+E2			
$\gamma_{16,1}(\mathrm{Cu})$	2046,54 (10)	$0,0035\ (11)$	M1+E2			
$\gamma_{8,0}(\mathrm{Cu})$	2062,45 (8)	0,034~(3)	(M1+E2)			
$\gamma_{9,0}(\mathrm{Cu})$	2081,32 (22)	0,015~(2)	(M1+E2)			
$\gamma_{10,0}(\mathrm{Cu})$	2092, 13 (10)	0,005~(3)	E2			
$\gamma_{17,1}(\mathrm{Cu})$	2110,30 (21)	0,0065~(13)	M1+E2			
$\gamma_{(-1,2)}(\mathrm{Cu})$	2181,8 (7)	0.0013(8)				
$\gamma_{19,1}(\mathrm{Cu})$	2188,0 (3)	0,0016~(8)	M1+E2			
$\gamma_{20,1}(\mathrm{Cu})$	2219,0 (4)	0,0029 (8)	M1+E2			
$\gamma_{11,0}(\mathrm{Cu})$	2336,54 (12)	0,077~(5)	M1+E2			
$\gamma_{12,0}(\mathrm{Cu})$	2497,19 (9)	0,020(2)	(M1+E2)			
$\gamma_{13,0}(\mathrm{Cu})$	2511,06 (6)	0,011(2)	[M1+E2]			
$\gamma_{14,0}(\mathrm{Cu})$	2535, 83(7)	0,067(3)	(M1+E2)			
$\gamma_{15,0}(\mathrm{Cu})$	2696, 66 (13)	0,039(3)	M1+E2			
$\gamma_{16,0}(\mathrm{Cu})$	2716,47 (9)	0,012(1)	M1+E2			
$\gamma_{17,0}(\mathrm{Cu})$	2780,23 (21)	0,0154(12)	M1+E2			
$\gamma_{18,0}(\mathrm{Cu})$	2808,10 (8)	0,0036 (6)	M1+E2			
$\gamma_{19,0}(\mathrm{Cu})$	2857,9(3)	0,0028(5)	M1+E2			
$\gamma_{20,0}(\mathrm{Cu})$	2888,9(4)	0,0021(2)	M1+E2			
$\gamma_{21,0}(\mathrm{Cu})$	3042,59(8)	0,0048 (8)	M1+E2			
$\gamma_{22,0}(\mathrm{Cu})$	3101,4(4)	0,0007(2)	M1+E2			

3 Atomic Data

3.1 Cu

ω_K	:	$0,\!454$	(4)
$\bar{\omega}_L$:	0,0097	(4)
n_{KL}	:	$1,\!357$	(4)

		$\frac{\rm Energy}{\rm (keV)}$		Relative probability
X _K				
	$K\alpha_2$	8,02792		$51,\!3$
	$K\alpha_1$	8,04787		100
	$K\beta_3$	8,90541)	
	$\mathrm{K}eta_1$	8,90539	}	21,1
	${ m K}eta_5^{\prime\prime}$	8,9771	J	
$\mathbf{X}_{\mathbf{L}}$				
_	$\mathrm{L}\ell$	0,811		
	$L\alpha$	0,929 - 0,93		
	$\mathrm{L}\eta$	0,831		
	$L\beta$	0,949 - 1,022		
	$ m L\gamma$	0,952		

3.1.2 Auger Electrons

	Energy (keV)	Relative probability
Auger K KLL	6,731 - 7,059 7,746 - 8,064	100
KLX KXY Auger L	7,740 - 8,004 8,739 - 8,982 0.68 - 0.80	27,8 1,93 346

4 Electron Emissions

		Energy (keV)		Electrons (per 100 disint.)
e_{AL}	(Cu)	0,68 - 0,80		9,30(9)
e _{AK}	(Cu) KLL KLX KXY	6,731 - 7,059 7,746 - 8,064 8,739 - 8,982	<pre>}</pre>	3,50 (5)
$\beta_{0,0}^+$ $\beta_{0,1}^+$	max: avg: max:	$\begin{array}{ccc} 2344,2 & (15) \\ 1041,9 & (7) \\ 1674,3 & (15) \\ 722,0 & (7) \end{array}$	}	80,3(6) 7,00(2)

		Ener (ke	rgy V)		Electrons (per 100 disint.)
$\beta^+_{0,2}$	max: avg:	$1382,2 \\ 599,5$	(15) (7)	}	4,96(13)
$\beta^+_{0,4}$	max: avg:	$932,0\ 399,7$	(15) (7)	}	$0,\!49~(2)$
$\beta^+_{0,5}$	max: avg:	797,2 341,0	(15) (7)	}	0,042 (4)
$\beta^+_{0,7}$	max: avg:	$331,3 \\ 143,6$	(15) (6)	}	0,00039(2)
$\beta^+_{0,8}$	max: avg:	281,8 123,0	(15) (6)	}	0,0025~(2)
$\beta^+_{0,9}$	max: avg:	$262,9 \\ 115,1$	(15) (6)	}	0,00043 (9)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
$\begin{array}{cccc} XL & (\\ XK\alpha_2 & (\\ XK\alpha_1 & (\\ XK\beta_3 & (\\ XK\beta_1 & (\\ XK\beta_5'' & (\\ \end{array}$	(Cu) (Cu) (Cu) (Cu) (Cu) (Cu)	0,811 - 1,022 8,02792 8,04787 8,90541 8,90539 8,9771	}	0,0958 (16) 0,865 (12) 1,686 (22) 0,355 (6)	}	Kα K' $β_1$

5.2 Gamma Emissions

	$\frac{\rm Energy}{\rm (keV)}$	Photons (per 100 disint.)
$\gamma_{17,14}(Cu)$	244,40 (22)	0,0053 (8)
$\gamma_{3,2}(\mathrm{Cu})$	364,74~(6)	$0,0115\ (25)$
$\gamma_{14,10}(Cu)$	443,70(12)	0,013~(4)
$\gamma_{4,2}(\mathrm{Cu})$	450,14(5)	0,229 (16)
$\gamma_{11,6}(Cu)$	475,91 (13)	0,006 (3)
γ^{\pm}	511	185,6 (9)
$\gamma_{8,5}(\mathrm{Cu})$	515,45(9)	0,021 (8)
$\gamma_{9,5}(\mathrm{Cu})$	534,32(23)	0,005(2)
$\gamma_{5,2}(\mathrm{Cu})$	584,98(6)	0,033(4)
$\gamma_{16,10}(\mathrm{Cu})$	624, 34 (13)	0,011 (4)

	Energy	Photons
	(keV)	(per 100 disint.)
$\gamma_{1,0}(\mathrm{Cu})$	669,93(4)	8,19(32)
$\gamma_{14,6}(Cu)$	675,20 (9)	0,015 (3)
$\gamma_{15,7}(\mathrm{Cu})$	683,74(17)	0,004~(2)
$\gamma_{4,1}(\mathrm{Cu})$	742,23~(6)	0,067~(8)
$\gamma_{9,3}(\mathrm{Cu})$	754,56(23)	0,016~(6)
$\gamma_{10,3}(\mathrm{Cu})$	765,37(11)	0,007 (3)
$\gamma_{5,1}(\mathrm{Cu})$	877,06(6)	0,003~(2)
$\gamma_{6,2}(\mathrm{Cu})$	898,60(7)	0,009 (3)
$\gamma_{11,4}(\mathrm{Cu})$	924,37(13)	0,0099(20)
$\gamma_{2,0}(\mathrm{Cu})$	962,01 (3)	6,50(16)
$\gamma_{14,5}(\mathrm{Cu})$	988,82(9)	0,0038(11)
$\gamma_{7,2}(\mathrm{Cu})$	1050,89(11)	0,0044 (11)
$\gamma_{14,4}(\mathrm{Cu})$	1123,66(8)	0,112(11)
$\gamma_{10,2}(\mathrm{Cu})$	1130,10(10)	0,013(2)
$\gamma_{15,5}(\mathrm{Cu})$	1149,65(14)	0,019(2)
$\gamma_{16,5}(\mathrm{Cu})$	1169,46(10)	0,0077 (16)
$\gamma_{14,3}(\mathrm{Cu})$	1209,06(9)	0,014(3)
$\gamma_{17,5}(\mathrm{Cu})$	1233,22 (22)	0,0025 (8)
$\gamma_{3,0}(\mathrm{Cu})$	1326,75(5)	0,069(4)
$\gamma_{7,1}(\mathrm{Cu})$	1342,97(12)	0,0025 (8)
$\gamma_{11,2}(\mathrm{Cu})$	1374,50(12)	0,034(2)
$\gamma_{16,3}(\mathrm{Cu})$	1389,69 (10)	0,043(6)
$\gamma_{8,1}(\mathrm{Cu})$	1392,50(9)	0,10(1)
$\gamma_{4,0}(\mathrm{Cu})$	1412,14(4)	0,74 (3)
$\gamma_{19,4}(Cu)$	1445,7(3)	0,0025 (8)
$\gamma_{18,3}(Cu)$	1481,32(9)	0,0016(8)
$\gamma_{5,0}(\mathrm{Cu})$	1546,98(5)	0,124(5)
$\gamma_{14,2}(Cu)$	1573,79(8)	0,016(2)
$\gamma_{11,1}(Cu)$	1000,59(13)	0,0014(0)
$\gamma_{(-1,1)}(Cu)$	1090,0 (10) 1754,42 (0)	0,002(1)
$\gamma_{16,2}(Cu)$	1734,42(9) 1837.32(10)	0,0043(11) 0.0042(11)
$\gamma_{12,1}(Cu)$	1827,23(10) 1860.60(6)	0,0042 (11)
$\gamma_{6,0}(Cu)$	1000,00(0) 1865.87(8)	0,011(3)
$\gamma_{14,1}(Cu)$	1000,07(0) 10260(4)	0,0200(21) 0.0053(11)
$\gamma_{20,2}(Cu)$	1920,9(4) 2012 80(11)	0,0055(11)
$\gamma_{7,0}(Cu)$	2012,03(11) 2026,70(14)	0,011(2) 0.060(4)
$\gamma_{15,1}(Cu)$	2020,70(14) 2046(50(10))	0,000(4) 0.0035(11)
$\gamma_{16,1}(\mathbf{Cu})$	2040,50 (10) 2062.41 (8)	0.034(3)
$\gamma_{8,0}(Cu)$	2002,41(0) 2081.28(22)	0,034(3) 0.015(2)
$\gamma_{9,0}(Cu)$	2001,20(22) 2092.09(10)	0,015(2) 0.005(3)
$\gamma_{10,0}(Cu)$	2052,05(10) 2110 26(21)	0,005(3) 0.0065(13)
$\gamma_{17,1}(\mathbf{Ou})$	2110,20(21) 2181.8(7)	0,0003(10) 0.0013(8)
$\gamma_{(-1,2)}(Ou)$	2181,0 (1) 2188.0 (3)	0,0016(8)
$\gamma_{19,1}(\mathbb{C}u)$	22190(4)	0.0029(8)
$\gamma_{20,1}(\mathbb{C}\mathfrak{u})$ $\gamma_{11,0}(\mathbb{C}\mathfrak{u})$	$2336\ 49\ (12)$	0.077(5)
$\gamma_{12,0}(Cu)$	2497.14(9)	0.020(2)
$\gamma_{12,0}(\mathbb{C}u)$ $\gamma_{13,0}(\mathbb{C}u)$	2511.01(6)	0.011(2)
/10,0(~u)		·,·== (-)

	Energy (keV)	Photons (per 100 disint.)
$\begin{array}{l} \gamma_{14,0}(\mathrm{Cu}) \\ \gamma_{15,0}(\mathrm{Cu}) \\ \gamma_{16,0}(\mathrm{Cu}) \\ \gamma_{17,0}(\mathrm{Cu}) \\ \gamma_{18,0}(\mathrm{Cu}) \\ \gamma_{19,0}(\mathrm{Cu}) \\ \gamma_{20,0}(\mathrm{Cu}) \\ \gamma_{21,0}(\mathrm{Cu}) \\ \gamma_{22,0}(\mathrm{Cu}) \end{array}$	$\begin{array}{c} 2535,78 \ (7) \\ 2696,60 \ (13) \\ 2716,41 \ (9) \\ 2780,16 \ (21) \\ 2808,03 \ (8) \\ 2857,8 \ (3) \\ 2888,8 \ (4) \\ 3042,51 \ (8) \\ 3101,3 \ (4) \end{array}$	$\begin{array}{c} 0,067 \ (3) \\ 0,039 \ (3) \\ 0,012 \ (1) \\ 0,0154 \ (12) \\ 0,0036 \ (6) \\ 0,0028 \ (5) \\ 0,0021 \ (2) \\ 0,0048 \ (8) \\ 0,0007 \ (2) \end{array}$

6 Main Production Modes

 64 Zn(n,2n) 63 Zn 63 Cu(p,n) 63 Zn 63 Cu(d,2n) 63 Zn

 $^{64}\mathrm{Zn}(\gamma,\!\mathrm{n})^{63}\mathrm{Zn}$

7 References

- C.V. STRAIN. Phys. Rev. 54 (1938) 1021 (Half-life)
- W. BOTHE, W. GENTNER. Z. Phys. 112 (1939) 45 (Half-life)
- L.A. DELSASSO, L.N. RIDENOUR, R. SHERR, M.G. WHITE. Phys. Rev. 55 (1939) 113 (Half-life)
- O. HUBER, H. MEDICUS, P. PREISWERK, R. STEFFEN. Helv. Phys. Acta 20 (1947) 495 (Half-life)
- H. WÄFFLER, O. HIRZEL. Helv. Phys. Acta 21 (1948) 200 (Half-life)
- R.W. HAYWARD, E. FARRELLY-PESSOA, D.D. HOPPES. R. VAN LIESHOUT. Nuovo Cimento 11 (1959) 153 (Gamma-ray energies)
- R.A. RICCI, R.K. GIRGIS, R. VAN LIESHOUT. Nuovo Cimento 11 (1959) 156 (Half-life, Gamma-ray energies and emission probabilities)
- I.L. PREISS, R.W. FINK. Nucl. Phys. 15 (1960) 326 (Half-life)
- J.B. CUMMING, N.T. PORILE. Phys. Rev. 122 (1961) 1267 (Half-life, Gamma-ray energies and emission probabilities, EC emission probabilities)
- S.S. VASIL'EV, NO HSIENG CH'ANG, L.YA. SHAVTVALOV. Sov. Phys. JETP 13 (1961) 331 (Half-life, Gamma-ray emission probabilities, Positron energies and emission probabilities)
- L.A. RAYBURN. Phys. Rev. 122 (1961) 168 (Half-life)
- A. PAULSEN, H. LISKIEN. Nukleonik 7 (1965) 117 (Half-life)
- D. DE FRENNE, M. DORIKENS, L. DORIKENS-VANPRAET, J. DEMUYNCK. Nucl. Phys. A103 (1967) 203 (Gamma-ray energies and emission probabilities)
- J.D. Goss, F.L. RIFFLE, D.R. PARSIGNAULT, J.C. HARRIS. Nucl. Phys. A115 (1968) 113 (Half-life)
- M. BORMANN, B. LAMMERS. Nucl. Phys. A130 (1969) 195 (Half-life)
- I. BORCHERT. Z. Phys. 223 (1969) 473 (Half-life, Gamma-ray energies and emission probabilities)

-	A. KIURU, P. HOLMBERG. Z. Phys. 233 (1970) 146
	(Gamma-ray energies and emission probabilities) N.R. COVE, M.L. MARTIN, Nucl. Data Tables 10 (1071) 205
-	(EC/positron ratios)
-	G.C. GIESLER. PhD thesis, Michigan State University (1971)
	(Gamma-ray energies and emission probabilities, EC/positron ratio to ground state)
-	G.C. GIESLER, K.L. KOSANKE, R.A. WARNER, W.C. MCHARRIS. Nucl. Instrum. Methods 93 (1971) 211
	(Gamma-gamma coincidence)
-	R.L. ROBINSON, Z.W. GRABOWSKI. Nucl. Phys. A191 (1972) 225
	(Gamma-gamma angular correlation, Mixing ratios)
-	D.F. CRISLER, H.B. ELDRIDGE, R. KUNSELMAN, C.S. ZAIDINS. Phys. Rev. C5 (1972) 419 (Half life)
_	A A C KLAASSE P F A GOUDSMIT Z Phys 266 (1974) 75
	(Gamma-ray energies and emission probabilities)
-	R. Collé, R. Kishore, J.B. Cumming. Phys. Rev. C9 (1974) 1819
	(Half-life)
-	G.H. FULLER. J. Phys. Chem. Ref. Data 5 (1976) 835
	(Spin, Magnetic dipole moment, Electric quadrupole moment)
-	F.P. LARKINS. At. Data Nucl. Data Tables 20 (1977) 311
	(Auger-electron energies) P. C. Kulkapni, D. P. Navalkele, Con. J. Phys. 58 (1080) 472
-	(Gamma-gamma angular correlation. Mixing ratios)
_	A. GRÜTTER. Int. J. Appl. Radiat. Isot. 33 (1982) 533
	(Half-life)
-	E. SCHÖNFELD. PTB Report PTB-6.33-95-2 (1995)
	(Fractional EC probabilities)
-	E. SCHÖNFELD, H. JANSSEN. Nucl. Instrum. Methods Phys. Res. A369 (1996) 527
	(Fluorescence yields, X-ray emission probability ratios, Auger-electron emission probability ratios)
-	(Fractional EC probabilities)
_	E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-98-1 (1998)
	(Auger electrons)
-	K.P. SINGH, D.C. TAYAL, H.S. HANS. Phys. Rev. C58 (1998) 1980
	(B(E2) values)
-	E. SCHÖNFELD, G. RODLOFF. PTB Report PTB-6.11-1999-1 (1999)
	(K-X rays) E. Schönder D. H. Langern, Appl. Padiat. Lost. 52 (2000) 505
-	E. SCHONFELD, H. JANSSEN. Appl. Radiat. Isot. 52 (2000) 595 ($P(X) = P(A_{e})$)
_	K.W.D. LEDINGHAM, I. SPENCER, T. MCCANNY, R.P. SINGHAL, M.I.K. SANTALA ET AL. Phys. Rev. Lett. 84
	(2000) 899
	(Half-life)
-	E. BAI, HUO JUNDE. Nucl. Data Sheets 92 (2001) 147
	(Nuclear levels)
-	I.M. BAND, M.B. TRZHASKOVSKAYA, C.W. NESTOR JR., P.O. TIKKANEN, S. RAMAN. At. Data Nucl. Data Tables
	(Theoretical ICC)
-	S. RAMAN, C.W. NESTOR JR., A. ICHIHARA, M.B. TRZHASKOVSKAYA. Phys. Rev. C66 (2002) 044312
	(Theoretical ICC)
-	T. KIBÉDI, T.W. BURROWS, M.B. TRZHASKOVSKAYA, P.M. DAVIDSON, C.W. NESTOR JR. Nucl. Instrum. Methods
	Phys. Res. A589 (2008) 202
	(Incoretical IUU) N. L. STONE, LARA, Perpert INDC(NDS), 0504 (2011)
-	(Spin, Magnetic dipole moment, Electric quadrupole moment)
-	M. WANG, G. AUDI, A.H. WAPSTRA, F.G. KONDEV, M. MACCORMICK, X. XU. B. PFEIFFER. Chin. Phys. C36
	(2012) 1603
	(Q-value)

 $_{\gamma}$ Emission intensities per 100 disintegrations

20/04/2013 - 29/08/2013

 γ Emission intensities per 100 disintegrations

20/04/2013 - 29/08/2013

 $_{\gamma}$ Emission intensities per 100 disintegrations

