

L X-ray intensities of Np from ²⁴¹Am disintegration using a metallic magnetic calorimeter (MMC)

M. Rodrigues, M. Loidl, Y. Ménesguen, M.-C. Lépy

CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette cedex, FRANCE

Interest of ²⁴¹Am L X-ray intensities:

Difficulties to calculate the X-ray intensities:

Difficulties to measure these intensities:

- Measured values of intensities with SC spectrometers:
 - Their FWHM energy resolution is too large to separate the peaks lying between 11 and 23 keV,
 - Their efficiency varies of ~ 10% between 11 and 23 keV.

- 241Am is widely used for efficiency calibration of semiconductor (SC) spectrometers (γ -ray at 59.5 keV and X-rays between 11 and 23 keV); L X-ray intensities are used to balance the nuclear decay scheme because numerous v transitions are anomalous

- X-ray intensities are important atomic fundamental parameters (FPs).

X-ray emissions of 241Am depend both on: - Nuclear FPs (γ transition probabilities, ICCs); - Atomic FPs (CK probabilities, ωL, transition rates). However, ²⁴¹Am have many anomalous γ transitions and ICCs

The use of ultra high energy resolution MMC will provide new data for radionuclide data evaluation, calculations and for users.

X-ray intensities by EDXRS with Metallic Magnetic Calorimeter (MMC)

Energy resolution of MMCs

- Statistical fluctuations:
- For SC spectrometers ~ 3 eV are required to create an electron-hole pair \rightarrow FWHM ~120 eV at 6 keV. For MMCs, only ~ 5 μ eV are required to thermally excite a
- state. \rightarrow energy resolution not limited by fluctuations but by the signal/noise ratio. statistical

• Signal :
$$\Delta V \propto \Delta T = \frac{E}{C(T)}$$

 \rightarrow Low temperature T required < 50 mK to minimize the detector heat capacity C

• Noise : Thermal noise
$$\propto \sqrt{4k_B \cdot T^2 \cdot C(T_0)}$$

SOUID noise $\propto T$

→ At low temperature high energy resolution achievable (ΔE_{FWHM} = 27 eV below 60 keV).

Energy spectrum analysis

Full energy peaks fitted with Voigt functions

Experimental set-up

New intensities for 34 L X-ray transitions with a high energy resolution MMC:

 \rightarrow Many peaks well separated → Satellite lines observed and analysed

→ Lower systematic errors due to the fitting procedure. → More confident data

Results

		Present work			M.C. Lepy		E. Schonleid
					measurement		calculation
		T		(2008)		(2001)	
X-ray	Energy	Intrinsic	I(E) (%)		I(E) (%)		I(E) (%)
Transition	(eV)	Efficiency					
L3M1 (LI)	11870.9	0.9964 (20)	0.929 (14)		0.837 (9)		0.842 (27)
L3M2	12242.0	0.9972 (20)	0.0114 (5)		0.0260 (5)		
L3M3	13171.7	0.9975 (20)	0.0103	0.01036 (40)		0.0199 (5)	
L3M4 (Lα2)	13/57.3	0.9977 (19)	1.281 (20)	13.36 (22)	1.398 (15)	13.00 (13)	1.37 (5)
L3M5 (La1)	13942.8	0.9973 (19)	12.08 (20)		11.60 (12)		12.00 (40)
L2M1 (Lη)	15858.5	0.9993 (20)	0.393 (6)		0.404 (5)		0.383 (16)
L3N1	16110.3	0.9994 (19)	0.236 (5)		0.248	0 (30)	0.218 (20)
L3N4 (Lβ2)	16793.1	0.9999 (19)	2 993	(40)	0.3390 (40)	2.790 (30)	2.93 (10)
L3N5	16839.3	0.7777 (17)	2000	(40)	2.451 (26)		
L1M2 (Lβ4)	17058.7	0.9999 (19)	1.596 (24)		1.736 (18)		1.74 (8)
L2M3	17162.8	1.0000 (19)	0.01952 (38)				
L3N7	17207.0	1.0001 (19)	0.0071 (22)	0 627 (10)		4 (6)	0.630 (20)
L3O1	17272.0	1.0001 (19)	0.0971 (22)	0.627 (10)	0.59		
L3O4P5	17504.1	1.0003 (19)	0.510 (8)				0.039 (20)
L2M4 (Lβ1)	17747.7	1.0005 (19)	11.71	(18)	11.83	3 (12)	13.4 (6)
L2M5	17936.0	1.0006 (19)	0.01349 (32)		1 210 (12)		
L1M3 (Lβ3)	17989.6	1.0006 (19)	1.340 (20)	1.353 (20)	1.310 (13)		1.48 (7)
L1M4	18574.3	1.0010 (20)	0.0740 (11)		0.0540 (10)		
L1M5	18759.9	1.0011 (20)	0.1108 (17)		0.0470 (10)		
L2N1	20099.0	1.0005 (22)	0.0972 (15)		0.0870 (10)		0.106 (5)
L2N3	20514.8	1.0002 (23)	0.00697 (25)				
L2N4 (Ly1)	20783.1	1.0000 (23)	2.844 (43)		2.940 (30)		3.19 (13)
L2N5	20830.5	1.0000 (23)	0.0365 (6)		0.467 (5)		0.481 (21)
L IN2 (L y2)	21096.1	0.9998 (24)	0.424 (6)				
L2N6	21186.0	0.9998 (24)	0.01892 (35)				
1.201	21262.3	0.9998 (23)	0.0336(6)	(==)			
L1N3	21202.0	0.0008 (23)	0.421 (6)	0.455 (6)	0.520 (6)	1.087 (12)	1.160 (40)
1204	213357.5	0.9997 (23)	0.421 (0)	5 (9)	0.567 (6)	1.007 (12)	
L207 PL N4 N5	21603.4	0.9997 (23)	0.0445	2(13)	01207 (0)		
1102	221003.4	0.0005 (23)	0.1160 (18)	5(15)			
1102	22132.9	0.0004 (22)	0.1100 (10)	0.2187 (34)	0.1730 (20)		0.236 (10)
1104.5	22213.8	0.9994 (23)	0.00600 (27)			0.2420 (28)	
L104,.5	22319.0	0.9993 (22)	0.00000 (27)	0.0454 (25)	0.0600 (10)		
L1F2 L1D2 5	22393.1	0.9992 (22)	0.0230(13)		0.0690 (10)		
LIF 3,.3	Enorgy	0.9992 (22)	I(E) (%)		I(E) (%) [Nucleide database]		
γ−iay	(-W)	Tree al annum					
transition	(ev)	Efficiency					
γ2-1 1.0	20344.0	0.8254 (29)	2.384 (5/)		2.51 (8)		
γ1-0 1/1-2	33196.7	0.61/1 (29)	0.1195 (19)		0.1215 (28)		
γ 4 -2	45418.3	0.658(6)	0.0664 (13)		0.0009 (29)		
γ6-4	55540.7	0.453 (5)	0.0212 (9)		0.0181 (18)		
γ2-0 59540.9 0.385 (5) Reference line 35.92 (17)						/)	
Uncertainties dominated by the absorber thickness uncertainties (required for the Monte							

Carlo simulation of the intrinsic detection efficiency) or by the counting statistic

