

Study of L X-rays of bismuth induced by Pb-210 disintegration and by photoionization

Laboratoire National Henri Becauerel

M.-C. Lépy, Y. Ménesquen, B. Boyer, M. Rodrigues

CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette cedex, FRANCE

X-ray emission occurs consecutively to different ionization processes and the respective X-ray spectra have generally different shapes due to multiple ionizations introducing satellite lines: for L and higher shells, the relative X-ray intensities depend on the initial vacancies distribution between the sub-shells which itself depends on the ionization process. This study will give the opportunity to determine L fluorescence yields using two approaches and to examine the discrepancies observed in previous compilations, since methodological differences could be involved.

Bismuth X-rays: 2 ways of production

Radioactive decay:

²¹⁰Pb mainly disintegrates by beta minus emission to the excited level (46.34 keV) and to the ground state of ²¹⁰Bi.

The gamma transition between these two levels is highly converted in the L shell, thus leading to intense L X-rays.

Radioactive point sources of ²¹⁰Pb were prepared and measured using accurately efficiency calibrated HPGe detector (FWHM = 115 eV at 5.9 keV).

Due to the high absorption coefficient of germanium, the detector efficiency remains high for both X- and gamma rays.

Radioactive decay

Spectrum processing using dedicated software (COLEGRAM), taking into account the detector response function and X-ray natural linewidths.

Photoionization

Several incident energies have been used to successively ionize the three L sub-shells, making it possible to analyze the rearrangement spectra and to determine the X-ray intensities of the L1, L2 and L3 series.

Work in progress

Next steps: Measurement of Bi mass attenuation coefficients and ionization cross sections.

Measurement of the ²¹⁰Pb radioactive source using a high-resolution cryogenic detector (magnetic metallic calorimeter). This cryogenic detector has an energy resolution (FWHM) of 30 eV across the whole energy range of analysis. Such a resolution allows the diagram and satellite lines to be clearly identified. Finally X-ray intensities, L fluorescence yields and Coster Kronig transition probabilities should be derived with low associated uncertainties.

Acknowledgment

Thanks to Pascal Mercère and Paulo da Silva for their support on the Metrology beamline of SOLEIL.

Photoionization on a pure Bi target:

 $I(\lambda$

Highly pure monochromatic radiation is obtained with a double-crystal (Si 111) at the Metrology beamline of the synchrotron SOLEIL. Measurement in two steps:

- 1. Transmission of the bismuth target measured under normal incidence using a calibrated photodiode.
- 2. The photon beam is incident at 45° on the bismuth target.
- The fluorescence spectrum is recorded by a silicon drift detector (SDD) (FWHM = 135 eV at 5.9 keV) installed at 45° from the target. The transmitted beam is simultaneously recorded by the photodiode,

For each sub-shell, the partial L X-ray intensity $(I(X_i))$ is linked to the gammaray intensity (I γ), conversion coefficients (α_i), fluorescence yields (ω_i), and Coster Kronig transition probabilities (f_{i}) :

$$I(X_1) = I_{\gamma} \cdot \alpha_1 \cdot \omega_1$$
$$I(X_2) = I_{\gamma} \cdot (\alpha_2 + \alpha_1 \cdot f_{12}) \cdot \omega_2$$
$$I(X_3) = I_{\gamma} \cdot (\alpha_3 + \alpha_2 \cdot f_{23} + \alpha_1(f_{13} + f_{12} \cdot f_{23})) \cdot \omega_3$$

The L1 fluorescence yield can be directly derived, assuming α_1 = 12.22 (18). (Band et al., At. Data Nucl. Data Tables, 81, 1, 2002)

Preliminary result: ω1= 0.114

For each group of lines, the partial fluorescence yield is:

 N_i : counts in the group of peaks corresponding to L_i sub-shell \mathcal{E}_i : detection efficiency for L_i photons

- *I_P*: incident photon flux
- τ_i : ionization cross section in *i* sub-shell*
- μ_{P} and μ_{i} : mass attenuation coefficients* of Bi for the incident and the fluorescence energy
- x: target thickness
- Ω : detection solid angle

Preliminary results: $\omega_2 = 0.388$ and $\omega_3 = 0.349$

*XCOM database: http://physics.nist.gov/PhysRefData/Xcom

