Ceatech

MEASUREMENT OF K FLUORESCENCE YIELDS OF NIOBIUM AND RHODIUM USING MONOCHROMATIC RADIATION

Jonathan Riffaud, Yves Ménesguen, Anastasiia Novikova, Marie-Christine Lépy CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), CEA-Saclay 91191 Gif-sur-Yvette Cedex, France

Context

- small metal samples irradiated and activated by neutrons • Reactor dosimetry:
 - characterization of flux and energy distribution of neutrons - allows:
 - validation of neutron codes
 - assessment of reactor vessel aging
- Each of these dosimeters has a specific neutron energy reaction threshold (see Table 1)
- Nb and Rh: information on neutrons with energies around 1 MeV
- Reaction of interest in dosimeters: ⁹³Nb(n,n')^{93m}Nb and ¹⁰³Rh(n,n')^{103m}Rh
- Activity measurement conventionally performed by X-ray spectrometry
- X-ray emission intensities determined from the γ -ray transition probabilities and fluorescence yields.

Mass-attenuation coefficients

- Mass-attenuation coefficients $\left(\frac{\mu}{\rho}\right)$ measured in transmission mode:

Dosimeter	Energy of emitted photons (keV)	Neutron energy region
⁵⁴ Fe(n,p) ⁵⁴ Mn	834.85 (γ)	Fast (3.1 MeV)
⁵⁸ Ni(n,p) ⁵⁸ Co	810.76 (γ)	Fast (2.8 MeV)
¹⁹⁷ Au(n, γ) ¹⁹⁸ Au	441.8 (γ)	Thermal
⁹³ Nb(n,n') ^{93m} Nb	16.59 (XK $_{\alpha}$) and 18.67 (XK $_{\beta}$)	Fast (1.2 MeV)
¹⁰³ Rh(n,n') ^{103m} Rh	20.17 (XK $_{\alpha}$) and 22.84 (XK $_{\beta}$)	Fast (1 MeV)

- Use of a monochromatic (*E*) parallel photon beam under normal incidence - Photon flux intensity measurement in front of the target (I_0) , and behind (I)
- Beam attenuation follows the Beer-Lambert law:

$$= I_0 e^{-\frac{\mu}{\rho}(E)\rho x} = I_0 e^{-\frac{\mu}{\rho}(E)\frac{M}{A}}$$

- Target characteristics: x = thickness, $\rho =$ density, M = mass, A = area - Relative combined standard uncertainties on $(\frac{\mu}{\rho})$: about 2%
- Results used for the fluorescence yield measurements

Experimental procedure

Measurements performed at the metrology beamline of the SOLEIL synchrotron:

- "Hard X-ray" branch
- Equipped with a double Si (111) crystal
- Provides monoenergetic photons in the 3.5 35 keV energy range

Reflection geometry method:

Monochromatic photon beam with energy E₀

- Linear attenuation (μ_0) and interaction by photoelectric effect with probability τ_{κ}
- Production of characteristic X-rays with energy E_i according to the partial fluorescence yield ω_{Ki}
- Emerging photons measured with a calibrated high-purity germanium (HPGe) detector, depending on the total attenuation coefficient μ_i
- Incident beam intensity (I_0) determined with a calibrated photodiode in transmission mode
- Number of events in the full-energy peak at energy $E_i(Ni)$ is proportional to the detection solid angle (Ω) and HPGe efficiency (ε_i):

$$dN_{i} = I_{0} e^{-\frac{\mu_{0}x}{\sin\gamma}} \tau_{K} \frac{dx}{\sin\gamma} \omega_{Ki} e^{-\frac{\mu_{i}x}{\sin\delta}} \frac{d\Omega}{4\pi} \varepsilon_{i}$$
$$\omega_{Ki} = \frac{4\pi}{\Omega} \frac{N_{i}}{\varepsilon_{i}} \frac{1}{I_{0}\tau_{K}} \frac{\mu_{0} + \mu_{i}}{1 - e^{-\frac{\mu_{0} + \mu_{i}}{\sin\gamma} l}}$$

- Thickness of target (ℓ): 20 μ m (Nb) and 50 μ m (Rh)
- Final result: average of results from different incident energies

	Table 2: Comparison of data for niobium				Table 3: Comparison of data for rhodium			
/ Results	Niobium			Rhodium				
	Author	Year	K fluorescence yield	Method	Author	Year	K fluorescence yield	Method
	C.E. ROOS	1954	0.713		I. BACKHURST	1936	0.801	
- Limited number of recent experimental values		1957	0.730 (20)		R.J. STEPHENSON	1937	0.77	
- Significant differences between experimental and theoretical values	SK ADODA	1081	0 738 (30)	Experimental		1954	0.779	Experimental
 Evaluations take into account both of them 	J.N. ANONA	1901	0.756 (50)	Experimental	U.E. KUU3	1957	0.786 (15)	

• Niobium:

- Measurements in agreement with other experimental values
- Very close to HUBBELL (1994): fit of experimental values
- Improvement of experimental uncertainties

Rhodium:

- Present result higher than most of the other experimental values
- High uncertainty on the photon flux intensity
- Thickness of rhodium sample too large

Further measurements with a thinner sample will be

PRESENT WORK		ω _K = 0,72	4 (14)
E. SCHÖNFELD	1996	0.751 (4)	
J.N. NUBBELL	1994	0.724	
	1989	0.7512	Evaluation
M.O. KRAUSE	1979	0.747	
W. BAMBYNEK	1972	0.748 (32)	
D.L. WALTERS	1971	0.7788	
V.O. KOSTROUN	1971	0.759	Theory
E.J. CALLAN	1962	0.754	
R. DURAK	2001	0.734 (28)	
S. SINGH	1990	0.722 (44)	

PRESENT WORK		ω _κ = 0,814 (41)		
E. SCHÖNFELD	1996	0.809 (4)		
J.H. HUBBELL	1994	0.792		
	1989	0.8086	Evaluation	
M.O. KRAUSE	1979	0.808		
W. BAMBYNEK	1972	0.807(31)		
M.H. CHEN	1980	0.808		
D.L. WALTERS	1971	0.8367	Theory	
V.O. KOSTROUN	1971	0.820	Theory	
E.J. CALLAN	1962	0.812		
S. SINGH	1990	0.829 (58)		
	1307	0.700(13)		

European Conference on X-Ray Spectrometry

