NEW MEASUREMENTS OF X-RAY FUNDAMENTAL PARAMETERS

Yves Ménesguen¹, M.-C. Lépy¹, B. Pollakowski², R. Unterumsberger², B. Beckhoff²
(1) CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), 91191 Gif-sur-Yvette Cedex, France
(2) Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany

STATE OF THE ART

X-ray fundamental parameters are of the utmost importance for quantitative and qualitative X-ray based techniques. In reference-free methods, the quality of the analysis result is directly dependent on the reliability of such parameters characterizing the interaction between X-ray photons and matter: μ, ω, f. New values of these parameters can be obtained either by experimental work, using modern facilities, or through quantum mechanical calculations.

The mass attenuation coefficients (μ/p)

Several databases exist and some of them are accessible to the community: Berger¹ (available online (NIST-XCOM) or xraylib), Henke² (available online (CXRO)), Elam³, Ebel, Cullen⁴. Unfortunately, large uncertainties are reported.

Transmission measurement of thin samples: the Beer-Lambert law links the transmission to the total mass attenuation coefficient μ/p to independent measurement of the sample mass (M) and area (A) is needed

→ evaluation of the bias introduced by possible elemental impurities (k_p)

→ special care was taken to characterize the photon beam (stability, monochromaticity, size)

→ careful evaluation of the combined standard uncertainty budget

MEASUREMENT OF THE MASS ATTENUATION COEFFICIENTS OF Cu (LNHB & PTB)

Transmission measurement of thin samples: the Beer-Lambert law links the transmission to the total mass attenuation coefficient μ/p to independent measurement of the sample mass (M) and area (A) is needed

$\mu/p = -\frac{A}{M} \times \ln \left(\frac{I}{I_0} \right) \times k_p$

Relative difference of this experimental work compared with databases

The fluorescence yields (ω)

The available databases contain only limited experimental results, together with theoretical calculations. Nonetheless, discrepancies exist between tables: see example between Bambynek⁶, Krause⁷ and Hubbell⁸

DETERMINATION OF μ, τ, ω, and f OF Sn

1. μ are measured by a transmission setup using samples of different thicknesses in the 0.1-35 keV energy range

2. Partial attenuation coefficients due to the L subshells are derived from μ

3. Fluorescence spectra are recorded as the excitation photon energy is progressively increased across each partial L transition edge

4. ω and f are derived from fluorescence spectra using Sherman’s equations

5. A fitting procedure is used to take into account the electron correlation effect on the photoabsorption coefficient (τ) near the transition energies, starting with the L₁ subshell to derive ω_0 and τ_0, which are then used to derive f_0 with an excitation energy above L₂ …

EXRS 2016, June 19-24, Gothenburg, Sweden