

NEW MEASUREMENTS OF X-RAY FUNDAMENTAL PARAMETERS

<u>Yves Ménesguen¹, M.-C. Lépy¹, B. Pollakowski², R. Unterumsberger², B. Beckhoff²</u> (1) CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), 91191 Gif-sur-Yvette Cedex, France (2) Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany

X-ray fundamental parameters are of the utmost importance for quantitative and qualitative X-ray based techniques. In reference-free methods, the quality of the analysis result is directly dependent on the reliability of such parameters characterizing the interaction between X-ray photons and matter: μ , ω , f. New values of these parameters can be obtained either by experimental work, using modern facilities, or through quantum mechanical calculations.

The mass attenuation coefficients (μ/ρ)

Several databases exist and some of them are accessible to the community: Berger^a (available online (NIST-XCOM) or xraylib), Henke^b (available online (CXRO)), Elam^c, Ebel^d, Cullen^e. Unfortunately, <u>large</u>

The fluorescence yields (ω)

Estimated percentage uncertainties for fluorescence and Coster-Kronig vields

The available databases contain only limited experimental results, together with theoretical calculations. Nonetheless, discrepancies exist between tables: see example between Bambynek^f, Krause^g and Hubbell^h

M. Krause et al., "X-ray fluorescence cross sections for K and L X-rays of the elements", Oak Ridge National Laboratory, Report No.: ORNL-5399 (1978)

<u>uncertainties are reported</u>.

[a] M.J. Berger et al., XCOM: Photon Cross Sections Database. Available online: http://physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

[b] B.L. Henke et al., photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables Vol. 54 (2), 181-342 (1993). Available online: http://henke.lbl.gov/optical_constants/

[c] W.T. Elam et al., A new atomic database for X-ray spectroscopic calculations, Radiation Physics and Chemistry, Vol. 63, pp. 121128, 2002

[d] H. Ebel et al., Numerical description of photoelectric absorption coefficients for fundamental parameters programs, X-Ray Spectrometry, vol. 32, no. 6, pp. 442451, 2003

[e] Dermott E. Cullen, UCRL--50400, Vol. 6, Rev. 5; "EPDL97: the Evaluated Photon Data Library".

Z (range)	ω _κ	ω_{L1}	ω_{L2}	ω_{L3}	f ₁₂	f ₁₃	f ₂₃	1.05 -	
5-10	40-10								
10-20	10-5	>30	>25	>25	10	5		ຊັ້ 1.00 −	
20-30	5-3	30	25	25	15	10	40		•
30-40	3	30	25	20	15	10	30-20		
40-50	2	30-20	25-10	20-10	20	10	20	ng 0.95 -	
50-60	2-1	20-15	10	10-5	20	15	20	• •	
60-70	1	15	10-5	5	15	10	20-15	·	
70-80	1	15	5	5-3	20	10-5	15	• • • •	
80-90	<1	15	5	3	10	5	15	•	
90-100	<1	15-20	10	3-5	10-50	5-10	15	•	
100-110	1	20	10	5	50-100	15	20	0.00 -	

[f] W. Bambynek et al., Review of Modern Physics, Vol. 44 (1972)

[g] M.O. Krause, J. Phys. Chem. Ref. Data., Vol. 8 (1979)

Hubbell vs Bambynek

• Krause *vs* bambynek

MEASUREMENT OF THE MASS ATTENUATION COEFFICIENTS OF Cu (LNHB & PTB)

Transmission measurement of thin samples: the Beer-Lambert law links the transmission to the total mass attenuation coefficient $\frac{\mu}{\rho} = -\frac{A}{M} \times \ln\left(\frac{I - I_{bruit}}{I_0 - I_{total}}\right) \times k_p$

- \rightarrow independent measurement of the sample mass (M) and area (A) is needed
- \rightarrow evaluation of the bias introduced by possible elemental impurities (k_p)
- \rightarrow special care was taken to characterize the photon beam (stability, monochromaticity, size)
- \rightarrow careful evaluation of the combined standard uncertainty budget

DETERMINATION OF μ , τ , ω , and f OF Sn

- 1. μ are measured by a transmission setup using samples of different thicknesses in the 0.1-35 keV energy range
- 2. Partial attenuation coefficients due to the L subshells are derived from μ
- 3. Fluorescence spectra are recorded as the excitation photon energy is progressively increased across each partial L transition edge

4. $\omega \times \tau$ are derived from fluorescence spectra using Sherman's

equations

5. A fitting procedure is used to take into account the electron correlation effect on the photoabsorption coefficient (τ) near the transition energies, starting with the L_3 subshell to derive ω_3 and τ_3 , which are then used to derive f_{23} with an excitation energy above $L_2 \dots$

EXRS 2016, June 19-24, Gothenburg, Sweden

EMRP European Metrology Research Programme Programme of EURAMET

within EURAMET and the European Union

The EMRP is jointly funded by the EMRP participating countries