

³H activity comparison between CPST, VNIIM and LNE-LNHB P. Cassette¹, P. Butkus², A. Gudelis², T. Shilnikova³

¹CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), 91191 Gif-sur-Yvette Cedex, France ²Ionizing Radiation Metrology Laboratory of the Center for Physical Sciences and Technology, Lithuania ³D. I. Mendeleyev Institute for Metrology, VNIIM, St. Petersburg, Russia Laboratoire National Henri Becquerel

An activity comparison of tritiated water was organized in 2013 between three laboratories: CPST (Lithuania), LNE-LNHB (France) and VNIIM (Russia). The solution was prepared by LNHB and ampoules were sent to the other laboratories. This solution was standardized in terms of activity per unit mass by participant laboratories using the Triple to Double Coincidence Ratio (TDCR) method in Liquid Scintillation Counting (LSC). The tritiated water solution is traceable to the solution prepared by LNHB for the CCRI (II)-K2.H-3 2009 ³H international comparison.

³H is a low-energy pure beta radionuclide of great importance, widely monitored in the environment. This radionuclide is produced naturally but the natural levels increased considerably due to nuclear weapons testing that released large amounts into the atmosphere and by the operation of nuclear power plants and fuel reprocessing centres. It is an important tracer in geological and biological processes and is a good indicator of nuclear activities.

Moreover, this is also a radionuclide of choice to test the instruments and models used in liquid scintillation standardization methods, as its detection efficiency is low. This exercise gave the opportunity for the primary laboratories of Lithuania and Russia to compare their measurement results with the activity values of the key comparison CCRI(II) K2.H-3 2009.

Measurement methods and instruments

- Dilution of the original solution used for CCRI(II) K2.H-3 2009 activity comparison sent by LNE-LNHB to CPST and VNIIM
- Dilution coefficient checked at LNE-LNHB (mass and TDCR measurement)
- The LNE-LNHB result is traceable to the result submitted to the CCRI(II) K2.H-3 2009 activity comparison
- Reference date: 30 September 2013
- ³H half-life: 12.312 (25) a

CPST counter

VNIIM counter

	CPST	VNIIM	LNE-LNHB	
Type of counter	Custom-built at CPST	Custom-built at VNIIM	Custom-built at LNHB	
Efficiency obtained with an unquenched standard of ³ H	~42%	~49%	~50%	
Type of phototubes	Burle 8850	Hamamatsu R331- 05	Burle 8850	
Operating temperature	22°C	22°C	22°C	
Coincidence resolving time	50 ns	40 ns	40 ns	
Efficiency variation method	Optical filter (black stripes drawn on the vial)	Chemical quenching	Grey filters	
Type of dead-time	Extendable	Extendable	Extendable	
Dead-time correction method	Live-time clock	Live-time clock	Live-time clock	
Dead-time base duration	50 µs	50 µs	50 µs	
Typical count-rate	500-1500 s ⁻¹	1500 s ⁻¹	1000 s ⁻¹	
Typical counting time	10 x 60 s	600 s	10 x 90 s	
Typical TDCR value	0.4	0.43	0.45	
Background counting rate, D	12	16	7	
Background counting rate, T	9	11	4	
Scintillation cocktail	Ultima Gold LLT	Ultima Gold	Ultima Gold	
Volume of scintillator, ml	16	10	10	
Number of sources measured	10	10	10	
Computer code used to calculate efficiency	TDCR07c	TDCR07c	TDCR07c	

LNE-LNHB counter

	CPST	VNIIM	LNE-LNHB		CPST		LNE-LNHB		VNIIM	
				Contribution due to	u(a) %	Comment	u(a) %	Comment	u(a) %	Commen
Balance	BC BL 100	Mettler AE 240	Mettler MT5	Counting statistics	0.4		0.16	Including variability between sources	0.1	
Calibration date 6/2013	5/2010	6/2009	Weighing	0.1		0.01		0.1		
			Background	0.1		0.03		0.05		
	Primary national standard of Russian Federation GET3-2008	8 calibrated mass standards from LNE	Dead time			<0.01	Uncertainty of the live-time clock			
			Resolving time	0.4			Included in dead-time	-		
			Pile-up			0.02	Probability of occurrence of 2 disintegrations during the resolving time	-		
			Decay data	0.3						
			Half-life			0.01				
Temperature control Yes		Yes	Impurities		None detected					
	Yes		Adsorption							
			PMT asymmetry	0.3			Taken into account in the calculation			
Humidity control	Yes	Yes	Yes	Counting time	-					
Buoyancy correction Not applied	1.0012 ± 0.0001	1.001077 ± 0.000015	Ionization quenching and kB	0.2		0.64	kB factor			
			Sample stability	0.6						
			TDCR model	0.2				-		
Weighing procedure Vial weighing	Pycnometer method	Pycnometer method	TDCR value					0.37		
			Combined relative standard uncertainty	0.98		0.66		0.39		

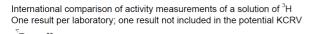
39

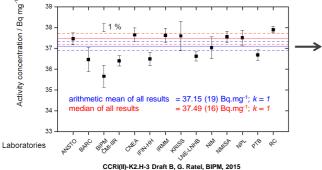
. ද් 38

bg /u 37

soncentr 36

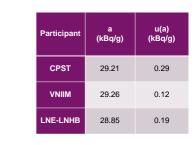
l activity


Scaled


35

34

33


Final results

Scaled results of this comparison

Conclusion

The activity concentrations of the ³H solution reported by the three participants are consistent within their uncertainties. The activity concentrations reported by CPST and VNIIM are also fully consistent with the reference value of the 2009 CCRI(II) ³H comparison. The uncertainties reported by the participants are significantly different, despite the fact that the measurements were conducted using similar instruments under similar conditions. This question deserves a more precise study and this will be the goal of the TDCR calculation comparison to be organized in 2015 by the CCRI (II). At the same time, the problem of uncertainty determination will be extensively treated in a Special Issue of *Metrologia*.

as'

