

ACORES, a software for fitting efficiency calibration curves including correlations

Boyer Bruno and Lépy Marie-Christine

Université Paris-Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France

Introduction

- The efficiency calibration of a HPGe detector is an essential step before being put into service
- □ Uncertainty calculations are a major issue → direct impact on quantitative results
- ACORES has been developed to generate efficiency curves from experimental data including correlations

Calculation principle

Experimental measurements of reference sources give a series of (E, ε) pairs where E is the energy (peak position) and $\varepsilon(E)$ the fullpeak efficiency given by

$$\varepsilon(E) = \frac{N(E)}{A \cdot I(E) \cdot t} \cdot \prod_{i} C_{i}$$

- \square *N*(*E*): counts in the full-energy peak
- □ A: radionuclide activity (Bq)
- $\Box \quad I(E): \text{ emission intensity at energy } E$
- \Box t: acquisition duration (live time) (s)
- \Box C_i : correction factors

How to get intermediate values? → Fit experimental values to obtain the efficiency curve

- $\Box \quad \text{Models} + X^2 \text{ minimization}$
 - APOLOG

$$ln(\varepsilon) = \sum_{k=1}^{p} a_k \cdot (ln(E))^{k-1}$$

APOCOPE

$$ln(\varepsilon) = \sum_{k=1}^{p} a_k \cdot (E)^{1-k}$$

- *p*: degree of the fitting function
- *a_k*: adjustment coefficient of order *k*

Correlations taken into account using the covariance matrix

- Matrix formalism
 - $A_{ij} = \ln(E_i)^{j-1}$ or $(1/E_i)^{j-1}$
 - Input data vector b: $b_i = ln(\varepsilon_i)$
 - Adjustment coefficients vector

Software presentation

- First release in 1996 then updated in 2008
- Rewritten in 2025 using Python and Qt
- 2025 vs 2008 tests have been carried out

ightarrow Upgrade validated

Fig. 1. ACORES GUI. Black arrows show ⁵⁹Fe data points

Features

- Input data: xlsx or csv file format
- Adjustable energy range
- Data editing (Fig. 2)
- Model selection: APOLOG or APOCOPE
- Auto (stops at the lowest X^2) or manual
- Result can be saved in xlsx or csv format
- Efficiency calculator: single value or multiple values from a file

Add /	Remove point					
	Radionucléïde	Energie	Rendement	Incertitude	Corrélation	IncludePoint
30 E	2u-152	778.90450	0.00165	0.65988	0.33000	2
31 E	2u-152	867.38000	0.00150	0.93799	0.33000	1
32 E	ću-152	964.07269	0.00135	0.65439	0.33000	2
33 E	ću-152	1086.40589	0.00121	0.71769	0.33000	1
34 E	éu-152	1112.03392	0.00118	0.64637	0.33000	2
35 E	ću-152	1212.94800	0.00110	1.49509	0.33000	1
36 E	Éu-152	1299.14200	0.00103	1.04566	0.33000	1
37 E	Éu-152	1408.01300	0.00096	0.62325	0.33000	1
38 E	3i-207	569.69800	0.00224	0.64213	0.51000	1
39 E	3i-207	1063.65600	0.00124	0.74819	0.51000	1
40 E	3i-207	1770.22800	0.00076	1.52071	0.51000	0
41 N	Na-22	1274.53700	0.00105	0.46213	0.23000	1
42 A	Am-241	98.97000	0.00921	3.38878	0.15000	0
43 A	Am-241	102.98000	0.00943	3.43560	0.15000	0
44 0	Cr-51	320.08350	0.00407	0.54997	0.35000	1
45 N	Mn-54	834.84800	0.00154	0.68927	0.60000	1
46 0	Co-57	122.06065	0.00884	0.41225	0.30000	0
47 0	Co-57	136.47356	0.00839	1.45231	0.30000	0
48 0	Co-58	810.76000	0.00158	0.31952	0.21000	1

Example: ⁵⁹Fe intensities

Discrepancy in the efficiency of the low-energy emissions (Fig. 1 🔨)

 Building the efficiency curve from the calibration dataset excluding ⁵⁹Fe to avoid autocorrelation (Fig. 3)

Fig. 3. ACORES efficiency curve

ACORES & I(E) =
$$\frac{N(E)}{A \cdot \varepsilon(E) \cdot t} \cdot \prod_i C_i$$

→ Absolute emission intensities (Fig. 4)

Fig. 4. ⁵⁹Fe absolute emission intensities

- $a = (a_1, a_2, \dots a_p)$
- Covariance matrix V:

$$V_{i,j} = \left[\frac{u^2(N_i)}{N_i^2} + \frac{u^2(I_i)}{I_i^2}\right] \cdot \delta_{ij} + \frac{u^2(A)}{A^2}$$

- Solution
 - $a = [A^T \cdot V^{-1} \cdot A]^{-1} \cdot A^T \cdot V^{-1} \cdot b$
- Uncertainties
 - Coefficients: $V_a = [A^T \cdot V^{-1} \cdot A]^{-1}$
 - Calculated efficiencies: V_ε = D · V_a · D^T
 D is the matrix of derivatives of ε

with respect to the parameters.

Fig. 2. Data editing window

- Point status
 - Included
 - Excluded individually or by radionuclide
 - Excluded by energy value

→ Agreement with Miyahara, et al.

Miyahara et al., Appl. Rad. Isotopes - 1989 - Vol. 40 - p. 343

Relative intensities → Agreement with DDEP values, see the associated article

Conclusion & Outlook

New version validated

- □ Knowledge of the efficiency curve
- Preliminary emission intensities of ⁵⁹Fe
- Online version will be developed

24th International Conference on Radionuclide Metrology and its Applications | Paris, France, 19-23 May 2025

