51 Ceatech

IMPROVEMENT OF ^{93m}Nb AND ^{103m}Rh MEASUREMENT **METHODOLOGY FOR REACTOR DOSIMETRY**

J. Riffaud¹, M.-C. Lépy¹, C. Domergue², J.M. Girard², C. Destouches², H. Philibert² ¹CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), CEA-Saclay 91191 Gif-sur-Yvette Cedex, France ²CEA, DEN, DER, Laboratoire de Dosimétrie, Capteurs et Instrumentation (LDCI), Cadarache, 13108 Saint Paul-lez-Durance, France

Context

- Reactor dosimeters are small metal samples irradiated and activated by neutrons
- They allow: characterization of the neutron flux and energy distribution validation of neutron codes
 - assessment of reactor vessel aging
- Each of these dosimeters has a specific neutron energy region (see table 1)
- Nb and Rh: information on neutrons with energies around 1 MeV
- Reactions of interest in this work: ⁹³Nb(n,n')^{93m}Nb and ¹⁰³Rh(n,n')^{103m}Rh
- Activity measurement conventionally performed by X-ray spectrometry with HPGe detector
- Currently, measurements have significant deviations (> 5%) with neutron codes and large uncertainties (> 6%)

Dosimeter	Energy of emitted photons (keV)	Neutron energy region
⁵⁴ Fe(n,p) ⁵⁴ Mn	834.85 (γ)	Fast (3.1 MeV)
⁵⁸ Ni(n,p) ⁵⁸ Co	810.76 (γ)	Fast (2.8 MeV)
¹⁹⁷ Au(n, γ) ¹⁹⁸ Au	441.8 (γ)	Thermal
⁹³ Nb(n,n') ^{93m} Nb	16.59 (XK $_{\alpha}$) and 18.67 (XK $_{\beta}$)	Fast (1 MeV)
¹⁰³ Rh(n,n') ^{103m} Rh	20.17 (XK $_{\alpha}$) and 22.84 (XK $_{\beta}$)	Fast (1 MeV)

Dosimeter activity measurement

^{93m}Nb and ^{103m}Rh de-excite to their ground states via isomeric transitions

- Transition highly converted \rightarrow emission of X-ray photons
- Spectrometer must be calibrated in low-energy range (< 100 keV)

Detector calibration

- Experimental detection efficiency established for a reference geometry
- Use of different standard point sources: ⁸⁸Y, ¹⁰⁹Cd, ¹²⁹I, ¹³³Ba, ¹³⁷Cs, ¹⁵²Eu, ²⁰⁷Bi, ²¹⁰Pb, ²⁴¹Am
- Fit with least squares method \rightarrow Efficiency value for any energy
- Use of a poly-logarithmic function (see figure 1)

Efficiency calculation with Monte Carlo method

- Simulation of single gamma-emitting point sources for the same geometry
- Optimization of physical parameters of the germanium crystal
- Adjustment of the simulated efficiency curve with the experimental fit (see figure 2)
- Activity measured at the same distance as reference point sources
- Dosimeters cannot be considered as point sources (see figure 3): Nb: strip 5 mm long, 1 mm wide and 19.89 µm thick Rh: pellet 8 mm diameter and 50 µm thick

Self-absorption correction calculated with PENELOPE: ~ 20% for Nb and 50% for Rh

Self-fluorescence correction

Niobium dosimeters are not 100% pure, other elements are present, such as Mo, W, Ta, Fe and Ni

- These impurities and other isotopes of Nb are activated during the dosimeter irradiation (see figure 4)
- ⁹²Nb, ⁹⁴Nb, ⁹⁵Nb and ¹⁸²Ta are still present during the activity measurement
- Photons from the decay of these impurities (blue arrows) can interact with Nb atoms by photoionization
- The consecutive electronic rearrangement produces the same K X-ray in ⁹³Nb (red arrows) as in ^{93m}Nb (green arrows)
 - Increase of the number of counts in the full-energy peaks of ^{93m}Nb
 - Overestimated value of the dosimeter activity
- Corrective factors must be calculated to derive the true activity of ^{93m}Nb
- Self-fluorescence coefficients were calculated analytically in 1972 (see table 2): Calculated only for main energy lines Do not take into account:
 - - \rightarrow The electron interactions
 - \rightarrow The self-absorption of Nb X-rays in the dosimeter

Monte Carlo method applied to determine the contribution of these impurities in the dosimeter spectra

Table 2: Self-fluorescence coefficients used since 1972

Impurity	^{92m} Nb	⁹⁴ Nb	⁹⁵ Nb	¹⁸² Ta
Self-fluorescence coefficients (s ⁻¹ .Bq ⁻¹)	0.021	0.0055	0.0033	0.077

Monte Carlo simulation and results

GEANT4 simulation

- Same detector geometry as for efficiency calculation and Nb volume source
- Inclusion of the impurities' radioactive decay from the decay schemes (see figures 5 and 6)
 - \rightarrow Use of PenNuc files (see figure 7)
 - \rightarrow Takes into account the branching ratios, emission intensities and internal conversion

 \rightarrow Emission of photons and electrons with random position in Nb and random direction within 4π

Simulated radionuclides: ^{92m}Nb, ⁹⁴Nb, ⁹⁵Nb, ¹⁸²Ta and ⁶⁰Co

<u>Results</u>

Results obtained for the same source geometry are rather close to the coefficients found in 1972 (see table 3)

Table 3: Results of ⁹⁵Nb and ¹⁸²Ta impurities in the Nb dosimeter

Impurity	⁹⁵ Nb	¹⁸² Ta
Self-fluorescence coefficients (s ⁻¹ .Bq ⁻¹)	0.0030	0.065

- The ¹⁸²Ta impurity causes between 0.5% and 7% of the self-fluorescence in the Nb, of which 20% is due to electron interactions
- The ¹⁸²Ta coefficient calculated in table 2 does not take into account electron interactions (20% increase of the selffluorescence) and X-ray self-absorption in the dosimeter (20% decrease)

Next steps

- Similar approach for Rh dosimeter impurities (iridium and platinum)
- Experimental validation of the simulation and assessment of uncertainties

Figure 5: Simplified decay scheme of the ¹⁸²Ta

Figure 6: Decay scheme of the ⁹⁵ Nb
PAR NB95 AZP 95 ; 41 NDA 1
COM ====================================
DAU MO95
Q 925.6; 0.5
COMBranch SeparatorBranch SeparatorBEM 0.9997 ; 0.00006 ; 2 ; 159.8 ; 0.5 ; 0
COM Branch Separator
BEM 0.0003 ; 0.00005 ; 0 ; 925.6 ; 0.5 ; 1
COM Level Separator - T1/2 in seconds LED 765.806 : 0.006 : 6 : 4.4E-12 : 7.E-13 : 2
GA 0.00015 ; 0.00003 ; 561.88 ; 0.02 ; 1
EL 0.000000053 ; 0.000000011 ; 559.21 ; 0.02 ; 1
GA 0.99808 ; 0.00007 ; 765.803 ; 0.006 ; 0 FK 0.001288 : 0.00004 : 745.806 : 0.006 : 0
EL 0.0001447; 0.000004; 763.136; 0.006; 0
LED 204.118 ; 0.009 ; 3 ; 7.51E-10 ; 9.E-12 ; 1
GA 0.00028; 0.00008; 204.117; 0.002; 0
EL 0.00000162 ; 0.00000048 ; 201.4467 ; 0.002 ; 0

Figure 7: Example of a PenNuc file with ⁹⁵Nb

October 3|6, 2016 Paris, France

