

A low background setup for low energy X-ray detection in the context of the BabyIAXO / IAXO axion searches

M. Loidl¹, L. Couraud², E. Ferrer-Ribas³, L. Gastaldo⁴, A. Kaur¹, S. Kempf⁵, X.-F. Navick³, M. Rodrigues¹, M. L. Zahir¹

¹Université Paris-Saclay, CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France

²Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Saclay, F-91120 Palaiseau, France

³CEA, Institut de Recherche sur les Lois Fondamentales de l'Univers, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

⁴Heidelberg University, Kirchhoff Institute for Physics, Heidelberg, Germany

⁵Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

martin.loidl@cea.fr

Aims:

Axions:

- Development of low energy threshold, low background X-ray detectors for axion search in the BabyIAXO / IAXO projects
- Comparison of different detector types: MicroMegas, TES, MMC, SDD

DALPS – ANR project 2020-2024

Detectors for axion-like particle searches

Search for solar axions in BabyIAXO / IAXO

Production in the Sun Conversion of thermal photons into axions via Primakoff effect in the solar core

Detection in the helioscope Conversion of axions into photons via the inverse Primakoff effect in a strong magnetic field

Experimental challenge

Low energy threshold ($\sim 0.5 \text{ keV}$), very low background X-ray detectors

Test program at CEA-LNHB

Determine the intrinsic background of an MMC based X-ray detector array

Requirement: ~ 10^{-8} counts/keV/cm²/s

- Proposed as a solution of the strong CP problem of the standard model
- Primordial axions would be a natural dark matter candidate
 - Search (in tunable microwave cavities) extremely challenging
- Axions should be copiously produced in stellar cores, e.g. in the sun
 - **Discovery of axions** within a substantial part of the relevant parameter space in reach for IAXO

IAXO: Full-scale experiment with 8-bore magnet Will be hosted at DESY

BabyIAXO: Smaller 2-bore magnet Fully funded, under construction

Actual level:

Background spectrum (one month, no special shielding, no muon veto)

 $\frac{\text{counts}}{\text{keV cm}^2 \text{ s}}$ First background estimation: $2 \cdot 10^{-4}$ (from 0 to 10 keV)

> Shielding Muon veto

Concept of low background setup

Rotation System

Acknowledgment: We acknowledge support from the Agence Nationale de la Recherche (France) ANR-19-CE31-133 0024.