Library of uranium and plutonium reference spectra

Introduction

Due to the difficulties in procuring and circulating certified uranium or plutonium samples, the ESARDA Working Group on Techniques and Standards for Non-Destructive Assay decided to create a uranium and plutonium reference spectra library in order to help users and programmers of uranium enrichment or plutonium analysis codes to test and perfect their processes.

For the main part, the uranium spectra were obtained in the context of the ESARDA international uranium enrichment exercise organized in 1997 and 1998 and the plutonium spectra in the context of the ESARDA Pu-2000 exercise organized in 2000. Several uranium samples characterized by a known enrichment and plutonium samples characterized by a known isotopic composition were measured using germanium and CZT detectors. The main characteristics of this reference spectrum library are presented here.

Uranium reference spectra

The uranium reference spectra were provided by LLNL [Lawrence Livermore National Laboratory] and LNHB [Laboratoire National Henri Becquerel] in the context of the international ESARDA uranium exercise*.

(*: J. Morel, C. Hill, M. Bickel, A. Alonso-Munoz, S. Napier, B. Thaurel and ESARDA NDA-WG Members. Results from the uranium enrichment measurement exercise, final report. Note Technique LPRI/98/23, CEA Saclay, France (1998). J. Morel, C. Hill, M. Bickel, A. Alonso-Munoz, S. Napier, B. Thaurel, ESARDA NDA-WG Members. Results from the international evaluation exercise for uranium enrichment measurements, Appl. Radiat. Isot. 52 (2000)).

These spectra were obtained by counting several samples prepared and characterized by IRMM [Institute for Reference Materials and Measurements] and BNFL [British Nuclear Fuels Ltd], namely two LE UO₂ pellet samples with ²³⁵U abundances of 3.1 and 1.5 %, two LE UO₂ powder samples with ²³⁵U abundances of 2.0 and 2.9 %, two LE UO₂ freshly converted powder samples with ²³⁵U abundances of 3.4 and 2.7 %, one HEU metal sample with a ²³⁵U abundance of 93.2 %. Other reference spectra were obtained from five U₃O₈ samples in cylindrical aluminium cans proposed as reference materials (EC-NRM171) and having the following ²³⁵U abundances: 0.32 %, 0.71 %, 1.9 %, 2.9 %, 4.5 %. Other uranium reference spectra obtained by LLNL using their certified samples were also added; they correspond to the following ²³⁵U concentrations: 0.017, 0.48, 0.72, 0.99, 1.9, 2.0, 3.0, 4.5, 4.9, 10.1, 49.4, 75.1, 93.1, 93.2 and 99.1 %. The list of reference spectra appears in Table U-1. Most of the LLNL spectra were obtained by using a planar HPGe detector with an area of 8.0 cm² and 1.3 cm thick having an energy resolution of 0.61 keV at 186 keV. The LNHB spectra were obtained by using two different HPGe detectors and one CZT detector with the following characteristics:

HPGe planar type	$2.0 \text{ cm}^2 \text{ x } 1.0 \text{ cm}$	FWHM (at 186 keV): 0.65 keV
HPGe coaxial type	21 cm ² x 5.7 cm	FWHM (at 186 keV): 1.0 keV
CZT detector	9.0 mm ² x 2 mm	FWHM (at 186 keV): 2.2 keV

As a general rule, these spectra were coded in 4000 channels using an analysis range of about 0.05 to 0.08 keV/channel, so that the region of interest from 0 to 220 keV could be taken into account. As a general rule, the count rates were limited so that the peak widths at half, tenth and fifth peak heights did not increase by more than 10 % with respect to the usual values. These reference spectra were recorded in 8110 format ASCII files and also in binary

".chn" for spectra provided by LNHB. As shown in Tables U-2 and U-3, each ASCII file contains the following information:

- file name, origin and date,
- sample name and origin,
- declared enrichment value (with uncertainty if given and estimated for 1σ confidence level) and origin of the certification,
- sample description,
- main characteristics of the detector used i.e. type, crystal area, crystal thickness and FWHM at 185 keV,
- number of channels, live and real count times(s),
- energy of the first and last channels corresponding to the file,
- data corresponding to the channel contents.

For the spectra corresponding to the freshly converted samples, ²³⁸U is not in equilibrium with its daughter ²³⁴Th. Thus, in this case, the value of the correction decay factor is also quoted with the sample description.

The previous characteristics for all the uranium spectra are collated in the appended file "U ref spectra". The spectra files are available in the "Spectra from LNHB" and "Spectra from LLNL" subdirectories of the directory called "U spectra".

Origin of spectrum	Enrichment value %	Origin of sample	Number of spectra
LLNL	0.017	LLNL	1
LNHB	0.317	ESARDA U-exercise	1 (CZT)
LNHB	0.317	ESARDA U-exercise	1 (HPGe plan.)
LNHB	0.317	ESARDA U-exercise	1 (HPGe coax.)
LLNL	0.483	LLNL	1
LNHB	0.712	ESARDA U-exercise	1 (CZT)
INHB	0.712	ESARDA U-exercise	1 (HPGe plan)
I NHB	0.712	ESARDA U-evercise	1 (HPGe coay.)
LINI	0.712	LINI	1
	0.001	LLINL	1
LLNL	0.991	ELINL ESADDA U	1
LLINL	1.497	ESARDA U-exercise	
LNHB	1.497	ESARDA U-exercise	1(CZI)
LNHB	1.497	ESARDA U-exercise	3 (HPGe plan.)
LNHB	1.497	ESARDA U-exercise	3 (HPGe coax.)
LLNL	1.942	LLNL	9
LNHB	1.942	ESARDA U-exercise	1 (CZT)
LNHB	1.942	ESARDA U-exercise	1 (HPGe plan.)
LNHB	1.942	ESARDA U-exercise	1 (HPGe coax.)
LLNL	1.950	LLNL	1
LLNL	1.995	ESARDA U-exercise	4
LNHB	1.995	ESARDA U-exercise	1 (CZT)
LNHB	1.995	ESARDA U-exercise	3 (HPGe plan.)
LNHB	1.995	ESARDA U-exercise	3 (HPGe coax.)
LLNL	2.013	LLNL	1
LLNL	2.685	ESARDA U-exercise (decay cor.)	3
LNHB	2.685	ESARDA U-exercise (decay cor.)	1 (CZT)
LNHB	2.685	ESARDA U-exercise (decay cor.)	6 (HPGe plan.)
LNHB	2.685	ESARDA U-exercise (decay cor.)	6 (HPGe coax.)
LLNL	2.877	ESARDA U-exercise	10
LNHB	2.877	ESARDA U-exercise	1 (CZT)
LNHB	2 877	ESARDA U-exercise	3 (HPGe plan)
INHB	2.877	ESARDA U-exercise	3 (HPGe coax.)
LINI	2.077	LINI	15
LENE	2.949	ESARDA II evercise	1 (CZT)
	2.949	ESARDA U-exercise	1 (CZ1)
	2.949	ESARDA U-exercise	
	2.949	ESARDA U-exelcise	
LLINL	3.009	LLINL	1
LLNL	3.109	ESARDA U-exercise	3
LNHB	3.109	ESARDA U-exercise	1(CZI)
LNHB	3.109	ESARDA U-exercise	3 (HPGe plan.)
LNHB	3.109	ESARDA U-exercise	3 (HPGe coax.)
LLNL	3.432	ESARDA U-exercise (decay cor.)	3
LNHB	3.432	ESARDA U-exercise (decay cor.)	1 (CZT)
LNHB	3.432	ESARDA U-exercise (decay cor.)	6 (HPGe plan.)
LNHB	3.432	ESARDA U-exercise (decay cor.)	6 (HPGe coax.)
LLNL	4.460	LLNL	5
LNHB	4.462	ESARDA U-exercise	1 (CZT)
LNHB	4.462	ESARDA U-exercise	1 (HPGe plan.)
LNHB	4.462	ESARDA U-exercise	1 (HPGe coax.)
LLNL	4.949	LLNL	1
LLNL	10.079	LLNL	1
LLNL	49.380	LLNL	1
LLNL	75.130	LLNL	1
LLNL	93.076	LLNL	1
LLNL	93.156	ESARDA U-exercise	2
LNHB	93.156	ESARDA U-exercise	1 (CZT)
LNHB	93.156	ESARDA U-exercise	2 (HPGe plan.)
LNHB	93 156	ESARDA U-exercise	3 (HPGe coax)
LINI	93 170	LUNI	1
LINI	99.100	LINI	1
	·····		1

Table U-1 – List of uranium reference spectra

File name: Sample: Declared enr	125v003 125v ichment:93.	156 ± 0.02	Origin Origin: Origin:	Origin and date: LLNL - 1997 Origin: IRMM Origin: IRMM (mass spec.)					
Detector: HF	Ge plan	bumpic		Crystal	area (cm	²): 8.0			
FWHM at 185	keV (keV)	: 0.61		Crystal	thickness	(cm): 1	.3		
Number of ch	Live/re	al countin	g times(s)	: 6131/7070					
Energy first channel(keV): -9				Energy	of last ch	annel (ke	V): 319		
Data:									
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0		
0	0	4	71	255	5073	7934	8033		
7871	7723	7685	7632	7635	7565	7382	7313		
7313	7243	7112	7179	7105	6816	6809	6722		
6653	6712	6632	6484	6426	6485	6315	6384		
6290	6289	6306	6146	5987	5915	5926	5994		
5979	5995	5958	5694	5717	5673	5649	5668		
	etc								

Table U-2 – Example of data corresponding to the spectrum of a HEU metal sample

File name: X Sample: X-3	-X3e		Origin a Origin:	and date: IRMM	LNHB 199	7	
Declared enric	hment: 3.4	317 ± 0.00	Origin:	Origin: IRMM (mass spec.)			
Description: F	reshly cor	verted UO2	powder sa	ample (Equ	ilibrium f	actor: 0.6	39)
Detector: HP G	e plan		-	Crystal	area (cm ²): 2.0	,
FWHM at 185 ke	V (keV):	0.65		Crystal	thickness	(cm): 1.	0
Number of channels: 4096				Live/rea	l counting	times (s)	:
1800/1848							
Energy first c	Energy l	ast channe	el (keV):	214			
Data:							
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	13	124	249	463
472	484	440	450	432	433	428	412
408	412	389	376	394	388	395	362
366	368	351	383	329	333	314	316
349	336	324	273	314	300	296	322
298	302	306	308	297	281	271	253.
			etc				

Plutonium reference spectra

The plutonium reference spectra were provided by LNHB [Laboratoire National Henri Becquerel] in the context of the international ESARDA Pu-2000 exercise [*]. They were obtained by using three different HPGe detectors with the following characteristics:

- HPGe planar type: 2.0 cm² x 1.0 cm, FWHM (at 208 keV): 0.63 keV

- HPGe coaxial type: 21 cm² x 5.7 cm, FWHM (at 208 keV): 0.88 keV

- HPGe detector semi-planar type for safeguards: 30 cm² x 3.0 cm, FWHM (at 208 keV): 0.67 keV.

(* J. Morel, M. Bickel, C. Hill, A. Verbruggen and ESARDA NDA-WG Members. Results from the international evaluation "Pu-2000 exercise" for plutonium isotopic composition measurements; Note Technique DIMRI/LNHB/02-07, CEA-Saclay, France (2002))

The samples used for the Pu-2000 exercise were prepared by IRMM (Institute for Reference Materials and Measurements); their main characteristics in terms of type, packaging and plutonium mass are given in Table Pu-1. Their plutonium isotopic compositions are given in mass %, i.e. the ratio of the mass of a particular isotope to the total plutonium mass, for the reference date 2000-01-01 and their associated uncertainties are assessed for a 1 σ confidence level (68 %). Four other certified samples were also used as quality control samples. Their main characteristics and certified isotopic abundances are given in Table Pu-2 for the same reference date; the corresponding uncertainties are quoted for 1 σ confidence level. Detailed information on the samples can be found in the relevant IRMM internal report**.

(** C. Hill, A. Verbruggen, M. Bickel. Pu-2000: description of the samples used for the exercise; report GE/R/25/01, European Commission, JRC, Geel, Belgium (2001))

exercise
-2000
e Pu
the
l foi
parec
pre
mples
Sa
lutonium sa
- Plutonium sa
-1 – Plutonium sa
Pu-1 – Plutonium sa
able Pu-1 – Plutonium sa

Description		²³⁸ Pu m Value	ass % Unc%	²³⁹ Pu n Value	nass % Unc%	²⁴⁰ Pu m Value	ass % Unc%	²⁴¹ Pu n Value	ass % Unc%	²⁴² Pu n Value	nass % Unc%	²⁴¹ Am 1 Value	nass % Unc%
PuO ₂ canned in stainless steel container Bottom thickness container: 0.50 ± 0.01 mm. 0.1170 3.9 Total PuO ₂ mass: 4.23 ± 0.01 g	0.1170 3.9	3.9		79.490	0.1	18.99	0.3	0.741	0.85	0.664	1.3	1.100	1
PuO2 canned in stainless steel container0.55Container bottom thickness: 0.49 ± 0.01 mm.Total PuO2 mass: 4.66 ± 0.01 g 0.55	1.44 0.55	0.55		61.300	1.15	26.90	0.25	4.390	0.35	6.06	0.4	6.500	
$ \begin{array}{c} PuO_2 \text{ canned in stainless steel container} \\ Total PuO_2 \text{ mass:} > 4.0 \text{ g} \end{array} 0.5 \\ \end{array} $	0.0105 0.5	0.5		93.520	0.005	6.314	0.04	0.1161	0.10	0.0396	0.4	1.190	1.0
PuO ₂ canned in stainless steel container 0.0105 0.5 Total PuO ₂ mass: > 4.0 g	0.0105 0.5	0.5		93.520	0.005	6.314	0.04	0.1161	0.10	0.0396	0.4	1.170	1.0
PuO ₂ pellet sealed in a stainless steel container. Window: 0.3-0.5 mm, height of 0.0100 2.0 the pellet: 2 mm. Pu mass: 0.45 g	0.0100 2.0	2.0		93.850	0.03	5.989	0.05	0.1120	0.7	0.034	2.4	0.310	1.6
PuO ₂ pellet sealed in a stainless steel container. Window: 0.3-0.5 mm, height of the pellet: 2 mm. Pu mass: 0.45 g	0.0206 1.4	1.4		89.530	0.04	10.111	0.02	0.2500	0.25	0.094	1.1	0.456	0.7
PuO ₂ pellet sealed in a stainless steel container. Window: 0.3-0.5 mm, height of the pellet: 2 mm. Pu mass: 0.45 g	0.0431 0.5	0.5		84.970	0.02	14.196	0.03	0.559	0.4	0.235	1.7	1.060	1.1
PuO ₂ pellet sealed in a stainless steel container. Window: 0.3-0.5 mm, height of the pellet: 2 mm. Pu mass: 0.45 g	0.1000 1	1		78.390	0.01	19.917	0.02	1.036	0.20	0.568	0.4	2.370	6.0
PuO ₂ pellet sealed in a stainless steel container. Window: 0.3-0.5 mm, height of the pellet: 2 mm. Pu mass: 0.45 g	0.121 0.5	0.5		76.610	0.02	21.40	0.03	1.164	0.2	0.700	1.1	2.643	0.1
PuO ₂ pellet sealed in a stainless steel container. Window: 0.3-0.5 mm, height of the pellet: 2 mm. Pu mass: 0.45 g	0.869 0.4	0.4		68.090	0.01	24.49	0.02	3.027	0.1	3.521	0.1	6.100	1.7
PuO2 pellet sealed in a stainless steel1.18container. Window: 0.3-0.5 mm, height of1.18the pellet: 2 mm. Pu mass: 0.45 g0.6	1.18 0.6	0.6		64.150	0.03	26.46	0.04	3.753	0.1	4.617	0.1	6.500	1.5
PuO ₂ canned in stainless steel container 0.01 5	0.01 5	5		98.300	0.15	1.630	0.3	0.048	1.1	0.0230	2.6	1.200	25
PuO ₂ powder, low burn-up PuO ₂ mass: 5 g 0.0109 1	0.0109 1	1		93.540	0.01	6.292	0.02	0.1149	0.25	0.0385	0.4	0.2009	
PuO ₂ powder, high burn-up 1.303 0.15	1.303 0.15	0.15		64.990	0.01	24.02	0.025	5.041	0.1	4.642	0.1	4.950	0.6
Pu metal, low burn-up Pu mass: 1 g 0.00630 0.8	0.00630 0.8	0.8		95.420	0.025	4.501	0.1	0.0604	0.45	0.0073	2.1	0.1635	
MOX pellet. Total mass: 2 g 0.5 U mass %: 83.58, Pu mass %: 4.44 1.110 0.5	1.110 0.5	0.5		64.720	0.02	26.24	0.02	3.59	0.15	4.34	0.15	1.380	0.85
MOX solution. Volume: 10 ml, 1.110 0.5 U mass %: 83.58, Pu mass %: 4.44 1.110 0.5	1.110 0.5	0.5		64.720	0.02	26.24	0.02	3.59	0.15	4.34	0.14	1.380	0.85
Pure ²³⁹ Pu: PuO ₂ canned in stainless steel 0 container. Container bottom thickness: 0 - 0.78mm. Total PuO ₂ mass: 3.85 ± 0.05 g 0 -	- 0	i.		99.980	0.005	0.021	1	0.0001	1	0	1	0.0003	1
$ \begin{array}{c c} Pure \ ^{240}Pu. \ PuO_2 \ canned \ in \ stainless \ steel \\ container. \ Container \ bottom \ thickness: \ 0.40 \\ mm. \ Total \ PuO_2 \ mass: \ 5.62 \pm 0.05 \ g \\ \end{array} $	0.012 -			0.023		99.94	0.005	0.001	1	0.029		0.002	

Sample	Isotopic composition [Mass %]	Description
CBNM 93	Pu-238: 0.01050± 0.0001	PuO ₂ powder sealed in stainless steel container
	Pu-239: 93.5201 ± 0.0044	PuO_2 mass: 6.65 ± 0.06 g
	Pu-240: 6.3138 ± 0.0020	Window thickness: 0.780 ± 0.002 mm
	$Pu-241: 0.1161 \pm 0.0001$	
	Pu-242: 0.0396 ± 0.0002	
	Am-241: 0.2091 ± 0.0021	
CBNM 84	Pu-238: 0.0635 ± 0.0003	PuO ₂ powder sealed in stainless steel container
	Pu-239: 84.7755 ± 0.0058	PuO_2 mass: 6.65 ± 0.06 g
	Pu-240: 14.2657 ± 0.0043	Window thickness: 0.780 ± 0.002 mm
	Pu-241: 0.5357 ± 0.0005	
	Pu-242: 0.3596 ± 0.0005	
	Am-241: 0.7054 ± 0.0036	
CBNM 70	Pu-238: 0.7816 ± 0.0009	PuO ₂ powder sealed in stainless steel container
	Pu-239: 75.3797 ± 0.0052	PuO_2 mass: 6.65 ± 0.06 g
	Pu-240: 18.7890 ± 0.0045	Window thickness: 0.780 ± 0.002 mm
	$Pu-241: 2.9133 \pm 0.0010$	
	Pu-242: 2.1364 ± 0.0012	
	Am-241: 3.852 ± 0.019	
CBNM 61	Pu-238: 1.1133 ± 0.0012	PuO ₂ powder sealed in stainless steel container
	Pu-239: 64.700 ± 0.015	PuO_2 mass: 6.65 ± 0.06 g
	Pu-240: 26.262 ± 0.012	Window thickness: 0.780 ± 0.002 mm
	Pu-241: 3.5848 ± 0.0024	
	Pu-242: 4.3399 ± 0.0033	
	Am-241: 4.754 ± 0.024	

Table Pu-2 – Reference CBNM samples proposed for the Pu-2000 exercise

The plutonium reference spectra were coded in 8192 channels using an analysis range of 0.075 keV/channel, so that the region of interest from 0 to 614 keV could be taken into account. These spectra were recorded in 8110 format ASCII files and also in binary ".chn" format. As shown in Table Pu-3, each ASCII file contains the following information:

- file name, origin and date,
- sample name and origin,
- declared isotopic composition (at the reference date of 1 January 2000) for each plutonium isotope and Am-241 with the corresponding uncertainty estimated for a 1 σ confidence level,
- sample description,
- main characteristics of the detector used i.e. type, crystal diameter, crystal thickness and FWHM at 208 keV,
- number of channels, live and real count times(s),
- energy of the first and last channels corresponding to the file,
- data corresponding to the channel contents.

The previous characteristics for all the plutonium spectra are collated in the appended file "Pu ref spectra". The spectrum files are available in the "Spectra from coaxial detector", "Spectra from planar detector" and "Spectra from safeguards detector" subdirectories of the directory called "Pu spectra".

Example for PuO₂ pellet sample

File name : $P-J-1$ Origin and date :CEA-DAMRI 2000, October 11Sample : $J - 1484$ Origin : IRMM, Pu-2000 exerciseDeclared isotopic composition (from Pu-200exercise) at the reference date of 2000, January 1Pu-238/Pu : 0.869 ± 0.003 Pu-239/Pu : 68.09 ± 0.01 Pu-240/Pu : 24.490 ± 0.005 Pu-241/Pu : 3.027 ± 0.003 Pu-242/Pu : 3.521 ± 0.003 Am-241/Pu : 6.10 ± 0.10 Detector : HPGe planarCrystal diameter (cm) : 1.6 FWHM at 208 keV (keV) : 0.65 Live/real counting times (s) : $1200/1483$ Number of channels : 8192 Energy last channel (keV) : 614							L	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	2	4	6	127	4477	1700	245	
488	1602	2431	2759	3179	3395	3408	3426	
3348	3201	3201	3216	3135	3109	3084	3087	
3023	2986	3063	2940	3023	2917	2927	2892	
				etc				

Introduction of other reference spectra

This library could be supplemented by the introduction of other reference spectra. A standard form is proposed here for all other possible contributions; please complete the corresponding documents.

Preliminary sheet

1 – Laboratory:	
Address:	
Person(s) for correspondence:	
Phone number:	Fa

Fax number:

E-mail:

2 - Recommendations

The following conditions shall be complied with as far as possible, when acquiring these spectra:

- When determining uranium enrichment by methods based on analysis of the XK region, the uranium spectrum energy range of interest extends from 0 to 250 keV. It is thus recommended that a sensitivity of about 0.06 keV/channel for spectra coded over 4096 channels be used or 0.03 keV/channel for 8192 channels.

- When determining the isotopic composition of plutonium, use a ~1 mm thick cadmium screen to highly attenuate the 59.5 keV gamma-ray of ²⁴¹Am, without eliminating it altogether, if possible. The effect of this is to limit the count rates in the low energy range and suppress the sum-peaks due to this ray. For most applications, it is recommended to use an analysis range of ~ 0.075 keV/channel for spectra coded over 8000 channels. A number of applications are characterised by appreciable matrix effects and require analysis of the 500 to 1000 keV region. Thus, for this type of application, in addition to the spectra obtained under the above conditions, supplementary spectra must be acquired by doubling the gain.

- Conventional acquisition systems cannot operate at the high count rates of highly active samples without considerable degradation of the peak shapes. Thus with these systems, the count rates must be limited to less than 5000 pulses/second. For other systems capable of operating at high count rates, these rates must be limited to 50,000 pulses/second to ensure that the peak widths at half, tenth and fifth peak heights do not increase by more than 10 % with respect to the usual values.

- If collimation is used, make measurements with and without the collimator, if possible, to determine the influence of the latter.

- If possible, please send the spectra as ASCII files, preferably 8110 in format; if not, specify the format.

1 – General characteristics			<u>uenny teuno i</u>	<u>i sheet</u>	
Spectrum file name:					
Format ASCII - I8: 1	format "yes" or "	no"?, if no,	specify:		
Acquisition date:	/	Í	1 2		
Count time:	seconds				
Analysis range:	keV/cha	nnel; number	of channels u	sed:	channels
Region of interest:	keV to	C	keV		
2 – Experimental acquisitio	n conditions				
2.1 – Detector					
Type (Si-Li or HP G	e 'n' or 'p', plan	ar or coaxial):		
Dimensions - diame	ter: n	nm, thickness	s: r	nm	
FWHM (in keV) at	$122 \text{ keV} (^{57}\text{Co})$:	, a	at 186 keV (235)	U):	
2.2 - Screen(s) (if us	sed)				
Type of material:	, thickn	ness:	mm		
Type of material:	, thickn	ness:	mm		
2.3 – Geometry					
Sample to detector d	listance:	mm			
Collimator (if used):	•				
Type of material:	thickne	ess:	mm		
Inside diameter:	mm				
Collimator to detect	or distance:	mm			
2.4 - Other details					
Count rate:	counts/second	d			
3 – Sample					
3.1 – Nuclear mater	ial characteristic	2S			
Chemical form:		physical f	orm:		
Approximate amour	nt of U:	grams			
Sample age:	years				
If ²³⁴ Th is not in equilibr	ium with ^{25°} U (ca	ase of freshly	converted san	nples), give th	e number of
days between separation	time and the star	t of the spect	rum acquisitio	n:	days
3.2 – Container dese	cription		,		
Composition and thi	ickness of first en	ivelope:	/	cm	
Composition and thi	ckness of second	l envelope:	/	cm	
3.3 - Description of	any matrix mate	rial		i a a	
Composition and thi	ckness of materia	als making u	p the matrix of	her than the r	nuclear
material	. 1		,		
Composition and thi	ickness of first m	aterial:	/	cm	
Composition and thi	ckness of second	i material:	/	cm	
4 – Uranium enrichment va	lue				
4.1 – Certification					
Certification origin:					
Method(s) used:	1	1			•
Kelerence date:	/	/	tion data		
4.2 - 1solope railos	oblained on spec	irum acquisii	lion date		(1)
$\frac{1}{234}$ U/total U ratio:		:	±		(1σ)
²⁰ U/total U ratio:	•,•	:	±		(Ισ)
4.3 - Kadioactive in					
Ivietnod used for ana	uysing impurities				
Nuclide 1:	, activity:	MBq			
INUCIIAE 2:	, activity:	MBd			

1 – General charac	teristics					
Spectrum f	ile name:					
Format AS	CII - I8: "yes" o	or "no"?, if no,	specify:			
Acquisition	n date:	/	/			
Count time	: se	conds				
Analysis range:	ke	V/channel; nu	mber of ch	annels used:	char	nels
Region of inter	est:	keV to	keV			
2 – Experimental a	equisition cond	litions				
2.1 - Detection	stor					
Type(Si-L	i or HP Ge 'n' c	or 'p', planar o	r coaxial):			
Dimension	s - diameter:	mm.	thickness:	m	m	
FWHM (in	keV) at 122 ke	V (⁵⁷ Co):	, at	208 keV (²³⁷ U):	
2.2 - Scree	n(s) (if used)		,	× ×	,	
Type of ma	iterial:	, thickness:		mm		
Type of ma	terial:	, thickness:		mm		
2.3 - Geon	ietrv	,				
Sample to	detector distanc	e: 1	mm			
Collimator	(if used):					
Type of ma	iterial:	thickness:		mm		
Inside dian	neter:	mm				
Collimator	to detector dista	ance:	. mm			
2.4 – Other	· details					
Count rate:	cou	unts/second.				
3 – Sample						
3.1 – Nucle	ear material cha	racteristics				
Chemical f	orm:		physical fo	orm:		
Ratio U/Pi	1:					
Approxima	te amount of Pu	1: §	grams			
Sample age	ye	ars				
If 237 U is not in	equilibrium with	th ²⁴¹ Pu (case o	of freshly c	converted samp	oles), give the	e number of
days between the	e separation tin	ne and the star	t of the spe	ectrum acquisit	tion:	days
3.2 – Conte	<i>iiner description</i>	n				
Compositio	on and thickness	s of first envelo	ope:	/	cm	
Compositio	on and thickness	s of second env	velope:	/	cm	
3.3 - Desci	ription of any m	atrix material				
Compositio	on and thickness	s of materials r	naking up	the matrix oth	er than the nu	clear material
Compositio	on and thickness	s of first mater	ial:	/	cm	
Compositio	on and thickness	s of second ma	terial:	/	cm	
4 – Isotopic compo	osition values					
4.1 - Certij	fication					
Certificatio	n origin:					
Method(s)	used:	, , ,				
Reference	date:	/ /				
4.2 - Isotop	nc ratios obtain	ied on the spec	etrum acqu	usition date		<i></i>
230 Pu/Pu _{tota}	ratio:		±			(l σ)
239 Pu/Pu _{tota}	ratio:		±			(1 σ)
240 Pu/Pu _{tota}	ratio:		±			(1 σ)
241 Pu/Pu _{tota}	_l ratio:		±			(1 σ)
242 Pu/Pu _{tota}	_l ratio:		±			(1 σ)
²⁴¹ Am/Puto	tal ratio:		±			(1 σ)
4.3 – Radio	oactive impuritie	25				
Method use	ed for analysing	impurities:				
Nuclide 1:	, act	ivity:	MBq			
Nuclide 2:	, act	ivity:	MBq			

5 – Comments