ICRM GSWG : ACTION TO FACILITATE THE USE OF GEANT4 IN GAMMA–SPECTROMETRY

ICRM-GSWG meeting – 14th June 2018 | Cheick THIAM

INTRODUCTION TO GEANT4

- Geant = « GEometry ANd Tracking »
 - General purpose Monte Carlo toolkit (free) for simulating the passage of particles through matter and interacting with it
 - Written in C++ and exploits advanced software-engineering techniques and objectoriented technology to achieve transparency

• Wide variety of user domains

- High energy and nuclear physics
- Space engineering and medical applications
- Material science, radiation protection and security...
- Geant4 offers lots of the functionalities required for the simulation
 - Geometry and navigation,
 - Physical processes governing particles interactions
 - Visualization of the detector and particle trajectories (OpenGL, VRML....)
 - Data analysis at different levels of detail and refinement
- User must build his own application by selecting the Geant4 components
 - Either selecting ready to use tools, or building his own from the base abstract classes
 Need a minimal knowledge of the Geant4 structure and base classes
 - → Need a basic knowledge in Linux and C++ programming

- Geant4 code in practice: a set of C++ classes, each describing an aspect of the simulation
- Mandatory user classes in a Geant4:

→ G4VUserDetectorConstruction

- ➔ G4VUserPhysicsList
- ➔ G4VUserPrimaryGeneratorAction

Volumes, Materials, Sensitive detectors.... to be used in the simulation must be defined in the G4VUserDetectorConstruction

list Ceatech

GEANT4 : KEY GEOMETRY CAPABILITIES

• Richest collection of shapes

- CSG (Constructed Solid Geometry) :
 - G4Box, G4Tubs, G4Cons, G4Sphere, ...
- Specific solids (CSG like)
 - G4Polycone, G4Polyhedra, G4Hype, ...
- BREP (Boundary REPresented) solids
 - G4BREPSolidPolycone, G4BSplineSurface, ...
- Boolean solids
 - G4UnionSolid, G4SubtractionSolid, ...
- The user can easily extend for complex geometries
- Describing a setup as a hierarchy or 'flat' structure
 - Describing setups up to billions of volumes
 - Tools for creating & checking complex structures
 - GDML (Geometry Description Markup Language) : XML-based format that enables to describe many aspects of geometry
 → Import CAD (3D modeler for design)
- Geometry models can be 'dynamic'
 - Changing the setup at run-time e.g. "moving objects"

universitė

GEANT4 : KEY GEOMETRY CAPABILITIES

- Three conceptual layers to define volumes and geometries G4Vsolid : shape, size
 - **G4Logicalvolume** : G4VSolid, material, sensitivity, visualization attributes, daughter physical volumes, user limits, etc.
 - G4VPhysicalVolume : position: rotation of mother frame, position in mother frame; repeated Volumes: a single physical volume represents multiple copies of a volume

➔ A unique physical volume which represents the experimental area must exist and contains all the other components "The world volume"

GEANT4 : PHYSICS MODELS IN GEANT4

Geant4 offers

- Electromagnetic processes (EM)
- Hadronic and nuclear processes
- Photon/lepton-hadron processes
- Optical photon processes
- Decay processes
- Atomic rearrangement (KLM model)
- Shower parameterization
- Event biasing techniques
- And you can plug-in more...

• Wide set of physical models provided

- Complementary models with different energy range applicability
 - That can be combined to cover a wide range of energy
- Competing models with same energy range applicability
 - That can be selected by the user (for example, some models are more accurate than others (in that case, speed is sacrificed)

GEANT4 : THE TOOLKIT AND SUPPORT (1)

→ https://geant4.web.cern.ch

RADIATION DETECTORS USED IN METROLOGY

Ionization chambers

→ calibration of coefficients calculation

Laboratoire Itational HENRI Becquerel

γ-ray spectrometry

→ calculation of detection efficiencies

TDCR counter (Triple to Double Coincidence Radio)

→ calculation of detection efficiencies

X-ray tub

→ calculation of correction factors

CRM-CSWC meeting - 14th June 2018 | Cheick THIAM | 8

- « GammaRaySpec » : γ-ray spectrometry dedicated benchmark
- Use the Geant4 Monte Carlo code to investigate the response of a HPGedetector
 - → How to compute full-energy-peak and total-energy efficiencies
 - → How to compute coincidence-summing corrections from an energy sprectrum
 - → Plot histograms (ex. energy deposit in Ge-crystal)
 - → Investigate the dead zone effect of Ge-Cristal, variation of physics models etc

• « GammaRaySpec » : γ -ray spectrometry dedicated benchmark

(1) Geometry: defined in the dedicated class GRSDetectorConstruction.cc /.hh

- → Contains a set of well-defined HPGe detector and sample geometries
- → User can selects a given configuration with UI commands lines

Detector	parameters
----------	------------

Parameter	Detector A	Detector B
Crystal material	Ge	Ge
Crystal diameter (including the side dead slayer)	60	60
Crystal length (including the top dead layer)	60	60
Dead layer thickness (top and side)	1	0
Hole diameter	10	10
Hole depth	40	40
Window diameter	80	80
Window thickness	1	1
Window material	AI	Al
Crystal-to-window distance	5	5
Housing length	80	80
Housing thickness	1	1
Housing material	AI	Al

8 cases source-to-detector configuration

Name	Detector	Source
AP	А	Point
AW	А	Water
AS	Α	Soil
AF	А	Filter
BP	В	Point
BW	В	Water
BS	В	Soil
BF	В	Filter

Sample parameters

Parameter	Water	Point	Soil	Filter
Sample diameter	90	-	60	80
Sample thickness	40	-	20	3
Sample material	Water	-	Dirt	Cellulose
Sample-to-window distance	1.0	1.0	1.0	1.0

list

Ceatech

• « GammaRaySpec » : γ-ray spectrometry dedicated benchmark

(2) Physics: defined in the dedicated class GRSPhysicsList.cc /.hh

- → Physics lists are based on modular design. Several modules are instantiated:
 - Transportation
 - EM physics (electron photon mode)
 - Decays

list

Coatech

- Atomic relaxation

→ EM physics builders are from G4 kernel physics_lists subdirectory. Physics lists and options can be (re)set with UI commands, or in the input macro file

→ Four choices are offered:

"emstandard" standard EM physics with current 'best' options setting,

"emlivermore" low-energy EM physics using Livermore data,

"emlowenergy" low-energy EM physics implementing experimental low-energy models,

"empenelope" low-energy EM physics implementing Penelope models.

ICRM-GSWG meeting – 14th June 2018 | Cheick THIAM | 11

universite

• « GammaRaySpec » : γ-ray spectrometry dedicated benchmark

(3) Primary generator: defined in the class GRSPrimaryGeneratorAction.cc /.hh

- → The primary kinematic consists of a single particle which hits the Ge detector
- → The type of the particle and its energy can be set in the macro file (ex. detectorA.mac)
- → User can also set the *Point source* or Volume source (*Water, Soil or Filter*)

(4) Detector response: defined in the class GRSAnalysisManager.cc /.hh

> print histograms stati	stic	
Gamma-Ray-Spectrometr	⁻y Rur	nStatus
 total events generat [Peak Efficiency] 	ed :	100000
- peak count	:	2521
 peak efficiency 	:	0.02521
- sigma (%)	:	1.99165
[Total Efficiency]		
- total count	:	2727
- total efficiency	:	0.02/2/
- sigma (%)	:	1.91495
write Root file : GammaRa	aySpec.ro	oot - done
close Root file : GammaRa	ySpec.ro	oot - done

universite

- - -

• « GammaRaySpec » : γ-ray spectrometry dedicated benchmark

Typical macro file (input)

# Geant4 - an Object-Oriented Toolkit for Simulation in HEP			
ŧ ŧ			
" # Macro file to execute detector A in GammaRaySpec example #			
# Can be run in batch, without graphic			
<pre># or interactively: idle> /control/execute detec #</pre>	LOFA. MAC		
# Nnumber of workers			
#/run/numberOfWorkers 4	<pre># set nb of workers (in multi-threading mode)</pre>		
# # Verbose			
/control/verbose 1			
/run/verbose 1			
/event/verbose 0			
/tracking/verbose 0			
/process/verbose 0			
# Activate physics model			
/GRS/physics/addPhysics emlowenergy	# set EM physics		
/cuts/setLowEdge 250 eV	# set range cuts		
<pre># Initialize kernel /www/initialize</pre>			
/run/initialize			
# Detector commands			
(GPS/detector/Verboge 0	# GDS detector verbogity		
/GRS/detector/AddGermaniumDeadZone_true	# set dead zone true (A) or false (B)		
/GRS/detector/GeCristalDeadZone 1 mm	# set dead laver laver		
/GRS/detector/SourceType Filter	# set source type (Point Water Filter Soil)		
/GRS/detector/SourceParticlePosition 0 0 1 mm	# set source position from the top of detector		
/GRS/detector/SourceParticleName gamma	# set particle name		
/GRS/detector/SourceParticleEnergy 1000 keV	<pre># set particle energy</pre>		
/GRS/detector/PeakEnergySigma 2.0 keV	# set peak energy sigma		
/GRS/detector/DetectionEnergyThreshold 1.0 keV	<pre># set detection threshold</pre>		
/GRS/detector/AddOutputFile 1	# add root output file		
/GRS/detector/OutputFileName detector_AF_1000keV	<pre># set output file name</pre>		
/GRS/detector/update	# update geometry		
# Frint progress status	Display mark information of sime formation		
run/princerogress 100000	# Display event information at given frequency		
# # Pup GO I			
Trun /beamOn 100000	# set number of events to be generated		
, 200, 2000000	, see mandel of evenos of se generated		

ICRM-GSWG meeting – 14th June 2018 | Cheick THIAM | 13

list ^{CE2tech}

NHB

GAMMA-RAY SPECTROMETRY BENCHMARK

• « GammaRaySpec » : γ-ray spectrometry dedicated benchmark

Screenshot of OpenGL viewer wrapped in Qt visualization driver

CARNOT CEA LIST UNIVERSITE PARIS-SACLAY

• « GammaRaySpec » : γ-ray spectrometry dedicated benchmark

Typical output for 8 cases configuration (detector A, B; and seletected energy: 50, 100, 200, 500, 1000 keV)

→ How to get « GammaRaySpec »

(1) Download from this link : ftp://ftp.cea.fr/incoming/y2k01/ICRM_GRS/GammaRaySpec.tar.gz

(2) Get a virtual machine containing the latest version of Geant4 and the GammaRaySpec benchmark, in Scientific Linux system

- → Operating with *Virtual Box* in Windows system
- → The distribution contains the following software already fully installed for the user :
 - Operating system : Scientific Linux 7, 64 bits version
 - Geant4 version 10.4 with all sets of data files.
 - Visualisation tools : Qt OpenGL and Raytracer
 - Analysis tools : ROOT, gnuplot
 - GammaRaySpec benchmark
 - Download from this link: <u>ftp://ftp.cea.fr/incoming/y2k01/ICRM_GRS/G4-GRS-VM.tar.gz</u>
 - → Detailed description in \${DIR/}GammaRaySpec/README file.

list ceatech

GAMMA-RAY SPECTROMETRY BENCHMARK

→ How to start:

Copy and unzip the archive (GammaRaySpec.tar.gz) in your working repository

```
>> cd %HOMEPATH%
>> tar -xzvf GammaRaySpec.tar.gz
>> cd ./GammaRaySpec
>>
Compile the code (2 possible modes)
>> source $(G4build)/geant4make.sh # Set the Geant4 environment
>>
(1) Compile using make
>> cd %HOMEPATH%/GammaRaySpec
>> make clean
>> make -j<number of threads> # Run using executable created ${DIR}/GammaRaySpec
>>
(2) Compile using the CmakeList.txt
```

→ Create a building directory and go inside, then execute cmake .. and make

```
>> cd %HOMEPATH%
>> mkdir Build_rep #Create a building directory
>> cd Build_rep
>> cmake -DGeant4_DIR="%HOMEPATH%\G4-install\lib\Geant4-G4VERSION" "%HOMEPATH%\GammaRaySpec"

* In 'batch' mode
>> GammaRaySpec detectorA.mac #Run using executable created ${DIR}/GammaRaySpec in 'batch' mode
* In 'interactive' mode (with visualization)
>> GammaRaySpec
Idle> control/execute detectorB.mac
Idle> run/beamOn 5
ICRM-GSWG meeting – 14<sup>th</sup> June 2018 | Cheick THIAM |17
```

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019