IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Use of Monte Carlo codes in gamma ray spectrometry in an **environmental radioactivity** metrology laboratory

Anne de Vismes Ott

ICRM GS WG Meeting

14th June, 2018

Paris

LMRE

Institute of Radiation Protection and Nuclear Safety

Laboratory of Environmental Radioactivity Metrology

- Environment monitoring program
- Radioecology studies
- Emergency preparedness

Gamma ray spectrometry

- 22 HPGe detectors (3 in Modane)
- 1500-2000 measurements / year
- Accreditation
- Counting time : 1 day \rightarrow 1 week
- Specificity: wide range of measurements
 - <u>Samples</u>: Matrices (i.e. sample material) and counting geometries
 - <u>Radionuclides</u>
 - <u>Detectors</u>

Which samples ?

Matrices

- All the environment compartments: atmospheric, marine, terrestrial...
- Various media : waters, soils, air (aerosol filters)
- Various organisms : biological matrices
- → Various chemical compositions
- \rightarrow Various densities (generally $0.5 \rightarrow 1.5$)

Counting geometries

- Measurements on the endcap
- Depending on :
 - the sample type
 - The availability of the sample
- 7 cylindrical geometries
- From 10 mL to 500 mL \rightarrow Variable thickness
- Tubes for well-type detectors
- → Variable filling height !

Which radionuclides ?

Naturally occurring radionuclides

- Cosmogenic : ⁷Be, ²²Na...
- Telluric : ⁴⁰K, ²³⁵U, ²³⁸U and ²³²Th natural decay chains...

Artificial radionuclides

- Present at trace levels in the French environment
 - Global fallout (nuclear weapon tests, Chernobyl...)
 - Nuclear facilities discharges
 - ⁵⁸Co, ⁶⁰Co, ^{110m}Ag, ¹³⁷Cs, ¹²⁹I...
 - \rightarrow Low level measurement
- Potentially released in case of incident or accident : ¹³¹I, ¹³⁴Cs...
 - \rightarrow Rapid measurement

Issues

- Not all available in standard sources
- Coincidence emissions

Which detectors ?

- 10 m w.e.
- « Classic »
 - Low background
 - Relative efficiency > 50%
 - Good resolution : 0.6 keV @ 46 keV (²¹⁰Pb) ; 1.7 keV @1460 keV (⁴⁰K)

BEGe

Broad Energy Range

High Efficiency High Resolution

Thin Window

- 6 BEGe5030 + 1 BEGe6530 (Canberra) and 5 Profile-FX (Ortec)
 - » 6 with anti-cosmic devices
- Anti-Compton system : 1 HPGe XtRa (Canberra) + Nal(Tl)
- Multi-detector Léda : 2 BEGe5030 (Canberra) + Nal(Tl)
- 1 planar detector for transmission measurement
- 1 SAGe well type detector (Canberra)

In the Laboratoire Souterrain de Modane (LSM)

- 1700 m w.e.
- ultra low background :1 coaxial + 2 well type detectors

Į	
S	AGe Well
4	p Counting
Н	igh Efficiency
Н	igh Resolution

Complexity

Sample matrix	CompositionDensity	Detection efficiency
Counting geometry	ThicknessFilling height (tube)	Colf attenuation
Radionuclides	EnergyDecay scheme	Self attenuation
Detectors	Crystal shapeWindow material	True coincidence summing correction

\rightarrow needs of simulations

Detection efficiency corrections

True coincidence summing effect (1/3)

Detection efficiency calibrations using standard sources

- All the counting geometries
- Mixture of gamma emitting radionuclides:

²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ⁵¹Cr, ¹¹³Sn, ⁸⁵Sr, ¹³⁷Cs, ⁵⁴Mn, ⁸⁸Y, ⁶⁵Zn, ⁶⁰Co + ²¹⁰Pb

Correction factors

- calculated with GeSpeCor (Version 4.1)
 - 4 detector types :
 - Coaxial with carbon window
 - Coaxial with aluminum window
 - BEGE5030 (Canberra)/Profile-FX (Ortec)
 - BEGE6530 (Canberra)
 - 7 counting geometries
 - 48 radionuclides
- Applied since 2008 to the calibration measurements (⁵⁷Co, ⁶⁰Co, ⁸⁸Y...)
 AND the sample measurements (²²Na, ²¹⁴Bi, ^{110m}Ag...)
- Record value : ^{108m}Ag in 10 mL on BEGe6530 : 0.49 → factor 2 in activity !

True coincidence summing effect (2/3)

MCNPX

- = ideal efficiency
- depending only on the energy

MCNP-CP

- Extension of MNCPX (A. Berlizov)
- ENSDF decay data
- real efficiency depending on the decay scheme → taking into account the True Coincidence Summing effect
- Comparable to the experimental detection efficiency (via the emission intensity)

Calculations with MCNP

- Combinations of detection efficiencies calculated by MCNPX and MCNP-CP
- Correction factor on efficiency =

$$C_{sum(E,geo)} = \frac{\varepsilon_{real}}{\varepsilon_{ideal}} = \frac{\varepsilon_{MCNP_CP(E,geo)}}{\varepsilon_{MCNPX(E,geo)}}$$

A. de Vismes Ott - ICRM GS WG Meeting -14th June, 2018

10/20

RS

Detection efficiencies

A. de Vismes Ott - ICRM GS WG Meeting -14th June, 2018

Well type detectors

Why? Each sample is unique : material AND volume

How ?

- 3 well type detectors (844, 450 and 487 cm³) simulated with MCNP-CP: extension of MNCPX + ENSDF decay data
- Simulated models fitted with standard sources:
 - Water equivalent epoxy resin in tubes with 4 filling heights
 - 3 contents : ●²⁴¹Am, ¹⁰⁹Cd, ⁵⁷Co, ¹³⁹Ce, ⁵¹Cr, ¹¹³Sn, ⁸⁵Sr, ¹³⁷Cs, ⁵⁴Mn, ⁸⁸Y, ⁶⁵Zn, ⁶⁰Co + ²¹⁰Pb @¹³⁴Cs ●¹²⁹I
- Efficiency calculation calculated for each sample :

efficiency = f(Sample material, Filling height, Sample mass)

- Automatically done in routine for 61 photon energies characterizing 32 radionuclides and 6 predefined sample materials
- Any radionuclide, any sample material !

Multi-detector systems (1/2)

Anti-Compton device

- 55 % XtRa Ge (Canberra)
- Nal (Tl)

H. Paradis (2016) Appl. Rad. Isot. 109 487-492

Leda system :

- 2 BEGe5030 (Canberra)
- Nal(Tl)

H. Paradis (2017) Appl. Rad. Isot. 126 179-184

Multi-detector systems (2/2)

Digital electronics

- List mode file
- Time and energy information
- Multiple analysis channels :
 - Spectra (peaks)
 - Matrices (fingerprints)
 - Coincidence
 - Anti-coincidence

Efficiency calibration

- Models fitted with standard sources measurements
- Geometries : 10, 17 and 60 mL
- MCNP-CP : extension of MNCPX
 - ENSDF decay data
 - List mode

Conclusion

Environment radioactivity \rightarrow Wide range of measurements

Needs of Monte Carlo simulations

- Detection efficiency corrections
- Detection efficiency calibrations

Validated by

- Standard sources measurements
- Reference materials measurements
- Proficiency tests, International comparisons, Intracomparisons...

Codes

- MCNP-CP : more versatile, more precise + mode list
 - e.g. need for coincidence measurement !
- GeSpeCor : more integrated : less flexible but more sure !
 - e.g. in case of emergency : use of GeSpeCor !

Outlook

Environment radioactivity \rightarrow Wide range of spectra

• More or less complex, presence of dominant Compton continuum, interferences...

New need of Monte Carlo simulations : spectra

- Since October 2017, PhD thesis on "Development on tools to help expertise in gamma ray spectrometry" in collaboration with CEA and LNHB
 - Deep learning : lab data base 2000 (spectrum, activities per RN)/year
 - Spectral unmixing based on the mathematic model of the physical process

- Algorithms tested at first on simulated spectra (MCNP-CP) from individual spectra
- More details in Salamanca, May 2019, during ICRM 2019...

Thank you for your attention

Contact : anne.de-vismes@irsn.fr

http://www.irsn.fr/EN/Research/Scientifictools/experimental-facilities-means/LMRE-Facility/Pages/default.aspx

A. de Vismes Ott - ICRM GS WG Meeting -14th June, 2018

