List Ceatech

Fitting in gamma-ray spectrometry

Fitting in gamma-ray spectrometry

2 main applications:

Efficiency curves

Full-energy peaks

Experimental calibration : series of discrete values (E, ϵ (E))

Fitting function: to get an efficiency value for any energy (interpolation)

Checking of the consistency of the input data

• E.g: residuals versus radionuclide

Influence of correlations between input data

EXAMPLE OF EFFICIENCY CALCULATION

Spectrum name: Geometry Calibration distance (mm) Source :	G91 102,7 818A	±	0,1	0,1	¹³³ Ba		half-life half-life half-life half-life half-life half-life	10,539 3,3258E+08 5,5430E+06 9,2383E+04 3,8493E+03 1,0539E+01	a s min h j a	0,006 1,9E+05 3,2E+03 5,3E+01 2,2E+00 6,0E-03		1 a = 1 a =	365,242 3,2E+07	; j , s
Date/time reference :	1/10/11 12:00	UTC	Activity (Re	ference time)	19 757	Bq	±	0,43	%					
Date/time measurement :	19/9/15 15:24	UIC	Corr. Radioa	active decay :	1,2982		±	0,01	%	I o get the o	countir	ng at the refere	ence data	
Active time	50 000	s												
Real time	51 124	S	Corr. mesur	ing time:	1,00005		±	3,033E-06	%	To get the o	countir	ng at the meas	surement st	arting time
Energy (keV)	Net pic area	Absolute unc.	Relative unc. (%)	Peak area with decay corrections	Relative unc. (%)	Intensity	unc (%)	Correction for coincidence.	unc (%)	Correction (other)	unc (%)	Efficiency	unc (%)	Absolute
30,85	7082934	4712	0,07	9195285	0,2	0,962	0,84	1,016	0,2	1,00	0,0	9,829E-03	1,0	9,7E-05
35,22	1709062	2315	0,14	2218757	0,2	0,2269	1,38	1,016	0,2	1,00	0,0	1,006E-02	1,5	0,00015
53,16	164030	592	0,36	212949	0,4	0,0214	2,80	1,025	0,3	1,00	0,0	1,033E-02	2,9	0,0003
80,90	2722682	1797	0,07	3534670	0,2	0,3594	0,99	1,020	0,2	1,00	0,0	1,016E-02	1,1	0,00011
160,61	39144	443	1,13	50818	1,1	0,0064	0,94	0,999	0,0	1,00	0,0	8,057E-03	1,5	0,00012
223,24	21386	288	1,35	27764	1,4	0,00450	1,11	1,032	0,3	1,00	0,0	6,448E-03	1,8	0,00012
276,40	272874	556	0,20	354253	0,3	0,0713	0,84	1,027	0,3	1,00	0,0	5,164E-03	1,0	5,3E-05
302,85	640941	830	0,13	832089	0,2	0,1831	0,60	1,023	0,2	1,00	0,0	4,705E-03	0,8	3,8E-05
356,01	1854400	1204	0,06	2407440	0,2	0,6205	0,31	1,017	0,2	1,00	0,0	3,993E-03	0,6	2,4E-05
383,85	250087	444	0,18	324671	0,3	0,0894	0,67	1,003	0,0	1,00	0,0	3,687E-03	0,8	3,1E-05

Decay data (Nucléide) KRI 2015

Efficiency calibration: fitting function

Experimental calibration of a HPGe detector with point sources at 10 cm from the detector window

Efficiency calibration: fitting function

Frequently used fitting functions :

Log-log polynomial:
$$\ln(\varepsilon(E)) = \sum_{i=0}^{n} a_i \cdot (\ln(E))^i$$

Log against 1/E:
$$\ln(\varepsilon(E)) = \sum_{i=0}^{n} a_i \cdot E^{-i}$$

- a_i coefficients determined by a least squares fitting method
- Polynomial degree >> number of experimental data
- Two parts for the maximum region (E ~ 100 keV) "knee"

Other functions i.e
$$\varepsilon(E) = \frac{1}{E} \sum_{i=0}^{n} a_i \cdot \left(\ln \left(\frac{E}{E_0} \right) \right)^{i-1} \dots$$

Efficiency calibration: fitting function

SPLINE functions

defined piecewise by polynomials ability to approximate complex shapes avoid oscillations for high degrees

(PTB : H. Janssens- NIM A 286(3), 1990, 398-402).

Fig. 1. (a) Experimental efficiency calibration a.v(a) (dots) for a 67.5 cm³ Ge(Li) detector and fitted spline curve (solid line). (b) Residuals of the fit (dots) and threefold relative standard deviation of the spline curve (solid line). Positions of interior knots are indicated by vertical broken lines.

Energy in keV ----->

Fitting using a log-log function

¹⁵²Eu : 15 experimental values

Fitting using a log-log function :Influence of weighting

Example fitting with log-log function using 15 experimental values from calibration with ¹⁵²Eu:

Fit using a log-log polynomial (degree 4)

- (1) without weighting
- (2) with weighting_

			Relative	Fitted	Fitted
	E (keV)	Experimental	uncertainty	efficiency	efficiency
	. ,	efficiency	(%)	(1)	(2)
	121.8	8.93E-03	1.5	8.92E-03	8.93E-03
	244.7	4.64E-03	1.8	4.69E-03	4.62E-03
	344.3	2.95E-03	1.5	2.93E-03	2.96E-03
	411.3	2.35E-03	3.6	2.30E-03	2.35E-03
	444	2.15E-03	2.7	2.08E-03	2.13E-03
	564.5	1.41E-03	12.3	1.54E-03	1.58E-03
	688.6	1.26E-03	7.8	1.23E-03	1.25E-02
	778.9	1.10E-03	1.5	1.08E-03	1.09E-03
	867.4	9.80E-04	2.7	9.70E-04	9.70E-04
	964.1	8.70E-04	1.5	8.70E-04	8.70E-04
	1086.5	7.70E-04	1.8	7.70 E-04	7.70E-04
	1112.1	7.50E-04	1.8	7.50E-04	7.50E-04
	1212.9	6.80E-04	5.4	6.90E-04	6.90E-04
	1299.8	6.40E-04	5.1	6.40E-04	6.40E-04
	1408	5.90E-04	1.5	5.90E-04	5.90E-04

Fitting using a log-log function : several radionuclides

¹⁵²Eu + other nuclides
Deviation of ¹⁵²Eu (black)

Fitting using a log-log function : several radionuclides

	¹⁵² Eu	only	All d		
Energy	Efficiency	Uncertainty	Efficiency	Uncertainty	Patio
(keV)	(X 10 ³)	(%)	(X 10 ³)	(%)	Ralio
120	9.320	0.924	9.200	0.500	1.013
150	8.551	1.614	8.403	0.476	1.018
200	6.972	1.345	6.876	0.463	1.014
250	5.705	0.909	5.646	0.421	1.010
300	4.778	0.791	4.736	0.405	1.009
400	3.590	0.784	3.553	0.386	1.010
500	2.889	0.844	2.850	0.374	1.014
600	2.435	0.899	2.394	0.373	1.017
700	2.117	0.882	2.077	0.373	1.019
750	1.991	0.851	1.953	0.372	1.020
800	1.881	0.816	1.844	0.369	1.020
900	1.698	0.763	1.664	0.362	1.020
1000	1.550	0.757	1.520	0.359	1.020
1100	1.428	0.778	1.402	0.360	1.019
1250	1.278	0.781	1.256	0.369	1.017
1500	1.085	1.113	1.070	0.386	1.014
1750	0.938	3.026	0.926	0.449	1.013
2000	0.820	6.466	0.808	0.706	1.014

Fitting using a log-log function : influence of polynomial degree

Fitting using a log-log function : influence of polynomial degree

Fitting using a log-log function : influence of polynomial degree

Fitting using a log-log function : influence of input data

TEST CASE: SET OF EXPERIMENTAL DATA

« Monoenergetic » : ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs

« Multigamma » : ¹³³Ba and ¹⁵²Eu

Radionuclid	Energy	Efficiency	Relative
е	(keV)	Enciency	(%)
152Eu	39.9	2.13E-03	0.423
152Eu	45.7	3.42E-03	4.971
133Ba	53.2	5.43E-03	0.994
241Am	59.6	6.79E-03	0.898
133Ba	81	9.01E-03	0.700
152Eu	121.8	9.55E-03	0.701
57Co	122.1	9.70E-03	0.598
133Ba	160.6	8.96E-03	2.600
133Ba	223.2	6.74E-03	3.605
152Eu	244.7	6.07E-03	0.906
133Ba	276.4	5.34E-03	0.506
152Eu	344.3	4.20E-03	0.809
133Ba	356	4.08E-03	0.490
133Ba	383.8	3.76E-03	0.505
152Eu	411.4	3.57E-03	1.092
152Eu	444	3.24E-03	0.802
137Cs	661.7	2.14E-03	0.514
152Eu	778.9	1.82E-03	0.716
152Eu	867.4	1.67E-03	1.016
152Eu	964	1.49E-03	0.805
152Eu	1086.6	1.34E-03	0.671
152Eu	1112.1	1.32E-03	0.608
152Eu	1299.1	1.14E-03	2.719
152Eu	1408	1.06E-03	0.569

list

Ceatech

FIT USING LOG/LOG FUNCTION

FIT USING LOG/LOG FUNCTION

Energy	Efficiency	Relative uncertainty		
50	0.004605	0.601		
100	0.009827	0.413		
136.54	0.009200	0.405		
200	0.007190	0.399		
302.8	0.004865	0.285		
500	0.002842	0.337		
1000	0.001451	0.351		
1400	0.001059	0.536		

FIT USING LOG/LOG FUNCTION

		Experimental data		Fitted data			
Radionuclide	Energy (keV)	Efficiency	Relative uncertainty (%)	Efficiency	Relative uncertainty (%)	Relative residuals (%)	
152Eu	39.9	2.13E-03	0.423	0.002132	0.422	-0.12	
152Eu	45.7	3.42E-03	4.971	0.003546	0.513	-3.54	
133Ba	53.2	5.43E-03	0.994	0.005354	0.619	1.48	
241Am	59.6	6.79E-03	0.898	0.006678	0.586	1.67	
133Ba	81	9.01E-03	0.700	0.009247	0.432	-2.61	
152Eu	121.8	9.55E-03	0.701	0.009590	0.408	-0.41	
57Co	122.1	9.70E-03	0.598	0.009584	0.408	1.26	
133Ba	160.6	8.96E-03	2.600	0.008432	0.404	6.27	
133Ba	223.2	6.74E-03	3.605	0.006546	0.384	2.97	
152Eu	244.7	6.07E-03	0.906	0.006014	0.362	0.97	
133Ba	276.4	5.34E-03	0.506	0.005340	0.320	-0.09	
152Eu	344.3	4.20E-03	0.809	0.004249	0.250	-1.14	
133Ba	356	4.08E-03	0.490	0.004100	0.247	-0.48	
133Ba	383.8	3.76E-03	0.505	0.003781	0.251	-0.46	
152Eu	411.4	3.57E-03	1.092	0.003507	0.267	1.84	
152Eu	444	3.24E-03	0.802	0.003229	0.294	0.45	
137Cs	661.7	2.14E-03	0.514	0.002129	0.358	0.63	
152Eu	778.9	1.82E-03	0.716	0.001820	0.324	-0.25	
152Eu	867.4	1.67E-03	1.016	0.001648	0.318	1.57	
152Eu	964	1.49E-03	0.805	0.001499	0.340	-0.62	
152Eu	1086.6	1.34E-03	0.671	0.001348	0.368	-0.44	
152Eu	1112.1	1.32E-03	0.608	0.001320	0.370	-0.39	
152Eu	1299.1	1.14E-03	2.719	0.001142	0.388	-0.19	
152Eu	1408	1.06E-03	0.569	0.001052	0.556	0.26	

Uncertainty on fitted values twice lower than the lowest experimental uncertainties

list ceatech

FIT WITH UNCERTAINTY THRESHOLD

Energy	Efficiency	Relative uncertainty			
50	0.004606	0.735			
100	0.009829	0.590			
136.54	0.009202	0.585			
200	0.007193	0.581			
302.8	0.004867	0.510			
500	0.002844	0.540			
1000	0.001453	0.549			
1400	0.001060	0.683			

Add minimum experimental uncertainty in quadrature

- Several energies from the same radionuclide:
- Activity
- Decay scheme (balancing the transition probabilities)

CORRELATION BETWEEN INPUT DATA 1 RADIONUCLIDE -> SEVERAL ENERGIES

$$\varepsilon = \frac{N_i}{A \cdot I \cdot t} \cdot C \quad \text{Associated} \quad u_c^2(\varepsilon) = \left(\frac{1}{A \cdot I}\right)^2 \cdot u^2(N) + \left(\frac{N}{A^2 \cdot I}\right)^2 \cdot u^2(A) + \left(\frac{N}{A \cdot I^2}\right)^2 u^2(I)$$
variance :

In logarithmic scale :

$$u_c^2(\ln(\varepsilon)) = \frac{u^2(\varepsilon)}{\varepsilon^2} \qquad \longleftrightarrow \qquad u_c^2(\ln(\varepsilon)) = \frac{u^2(N)}{N^2} + \frac{u^2(A)}{A^2} + \frac{u^2(I)}{I^2}$$

Covariance between two efficiency values (log scale) :

$$cov\left(\ln(\varepsilon_{i}), ln(\varepsilon_{j})\right) = \frac{cov(\varepsilon_{i}, \varepsilon_{j})}{\varepsilon_{i} \cdot \varepsilon_{j}} = \left[\frac{u^{2}(N_{i})}{N_{i}^{2}} + \frac{u^{2}(I_{i})}{I_{i}^{2}}\right] \cdot \delta_{ij} + \frac{u^{2}(A)}{A^{2}} + \frac{cov(I_{i}, I_{j})}{I_{i} \cdot I_{j}}$$

Neglecting covariances between intensity values (unknown !)

$$cov\left(\ln(\varepsilon_i), ln(\varepsilon_j)\right) = \frac{cov(\varepsilon_i, \varepsilon_j)}{\varepsilon_i \cdot \varepsilon_j} = \left[\frac{u^2(N_i)}{N_i^2} + \frac{u^2(I_i)}{I_i^2}\right] \cdot \delta_{ij} + \frac{u^2(A)}{A^2}$$

FIT WITH CORRELATIONS

Energy	Efficiency	Relative uncertainty			
50	0.004630	0.754			
100	0.009822	0.576			
136.54	0.009212	0.583			
200	0.007227	0.581			
302.8	0.004895	0.541			
500	0.002847	0.536			
1000	0.001453	0.573			
1400	0.001061	0.670			

COMPARISON OF CALCULATED VALUES FROM FITS

COMPARISON OF CALCULATED VALUES FROM FITS

EFFICIENCY FITTING : SOME RECOMMENDATIONS

- Several nuclides
- Weighting
- Correlation
- Avoid high polynomial degree
- Several sections if strong inflexion
- Check consistency
- No extrapolation

Fitting in gamma-ray spectrometry

2 main applications:

Efficiency curves

Full-energy peaks

Approximation : peak = Gaussian

$$G(E) = A \cdot \exp\left(-\frac{(E - E_0)^2}{2\sigma^2}\right)$$

 E_0 = energy, A = amplitude, σ = standard deviation

Gaussian area : S[- ∞ , + ∞] = (2 π)^{1/2} σ A

Sum of channels in the region [- 3σ , + 3σ] around the peak centroïd = 99.7 % of the Gaussian total area (S)

Peak with low-energy tailing : G(E) + T(E)

Tail = exponential background \otimes Gaussian shape (detector widening)

$$T(E) = \int_{-\infty}^{E_0} A \cdot T \cdot \exp(\tau \cdot E) \cdot \exp\left[\frac{-(E - E_0)^2}{2\sigma^2}\right] \cdot dE$$

$$T(E) = A \cdot \frac{T}{2} \cdot \exp\left[(E - E_0) \tau + \frac{\sigma^2 \tau^2}{2} \right] \cdot \operatorname{erfc}\left[\frac{1}{\sqrt{2}} \cdot \left(\frac{(E - E_0)}{\sigma} + \sigma \tau \right) \right]$$

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

DIFFERENCE SUMMING/FITTING

MAESTRO: sum – background : 345 004 (805) Fitting of Gaussian : 342 553 (819) Fitting of Gaussian with left tail : 344 223 (821)

DIFFERENCE SUMMING/FITTING

MAESTRO: sum – background : 345 004 (805) Fitting of Gaussian : 342 553 (819) Fitting of Gaussian with left tail : 344 223 (821)

OVERLAPPING PEAKS

list ceatech

¹³³Ba : Doublet 79.61 -81.00 keV
MAESTRO: sum – background : 2 131 204(1 560)
Fitting of 2 Gaussian functions:

- 79.61 keV: 148 905
- 81.00 keV : 1 975 540
- Total : 2 124 445

OVERLAPPING PEAKS

list ceatech

¹³³Ba : Doublet 79.61 -81.00 keV
MAESTRO: sum – background : 2 131 204(1 560)
Fitting of 2 Gaussian functions:

- 79.61 keV: 148 905
- 81.00 keV : 1 975 540
- Total : 2 124 445

- Ratio of peak areas: 13.27
- Ratio of emission intensities: 12.67

79.61 keV : 2.63(19) -> 2.51 ? 81.00 keV : 33.31 (30)

If peaks of about the same width : individuals areas area can be obtained from the total net area weighted by the relative amplitude of each peak

list Ceatech

OVERLAPPING PEAKS

511 keV + 514 keV fitting

Fitting : 511 = 7730 514 = 40400

 $\sigma = 1.07$ $\sigma = 0.53$

Bias on the 514 keV area = 9 % !!!

Low activity : requires to fix the Gaussian width (resolution calibration)

NATURAL LINEWIDTH

Photons = transitions between excited levels

Gamma = nuclear levels

X = atomic levels

For monoenergetic emission, there is a finite line shape

that is Lorentzian (Γ) L(E) = $\frac{\Gamma/2\pi}{(E-E_0)^2+(\Gamma/2)^2}$

Transition width (Γ) = initial state energy width + final state energy width $\Gamma = \Delta E_i + \Delta E_f$

NATURAL LINEWIDTH


```
Energy levels = uncertainty (\Delta E)
```

```
Heisenberg uncertainty principle : \Delta E \cdot \Delta t \ge h / 2 \pi
```

h (Planck constant) = 6.626 070 15 10^{-16} J.s (BIPM)

```
\Delta t uncertainty of the level half-life = 1/\lambda = 1.4427 t<sub>1/2</sub>
(\lambda = ln2 / t<sub>1/2</sub>)
```

Examples : gamma lines

- $^{137}Cs \rightarrow ^{137}Ba^m$: excited level = 661.7 keV
- level half-life = 2.552 min $\rightarrow \Delta E \approx 3 \ 10^{-18} \text{ eV}$

• 60Co at 1 332,5 keV

• level half-life = 0.713 ps $\rightarrow \Delta E \approx 6.5 \ 10^{-4} \ eV$

NATURAL LINEWIDTH

list ^{Ceatech}

Gamma-ray line width = some 10^{-3} eV (maximum)

X-ray lines : some eV

Detector widening (Gaussian) : some hundreds of eV

Element	z	Energy (eV)	Level v (eV K	width ′) L 3	Kα1 linewidth Γ(eV)	σ(eV)	Γ/σ
Nickel	28	7,45	1,44	0,48	1,94	155	0,030
Cadmiu m	48	22,98	7,28	2,50	9,8	200	0,115
Lead	82	72,80	60,4	5,8	66,2	350	0,445
Uranium	92	94,65	96,1	7,4	103,5	415	0,587

Peak = Lorentzian & Gaussian (Voigt profile)

For high Z X-ray lines, the natural linewidth is not negligible versus the detector resolution

Peak processing

list ^{Ceatech}

пнв

ri Becquer

Peak fitting – X-rays

ARNO

universite

Example : 241 Am spectrum (10 – 30 keV region)

- Gamma at 59.54 keV (35.92%) and 26.34 (2.31%) keV highly converted
- Intense Np L X-rays in the 12-20 keV (37.66 %)

241Am - LXray region (10 - 30 keV)

Peak fitting – X-rays

Processing of the Np L beta region

Detector + electronics effect (tailing can be included in the peak shape)

Scattering in the low-energy range : Is it part of the FEP ?

Peak fitting – Tailing

Experimental spectra obtained with calibration sources:

Point source at 10 cm

Volume source (50 cm³) at 10 cm

Difference in scattering effect depending on the geometry

-> Monte Carlo simulation to identify main scattering sites

PENELOPE (Univ. Barcelona) : Monte Carlo simulation code PENetration and Energy LOss of Positrons and Electrons

Result: Histogram of energy deposition in selected bodies (spectrum)

Modification of the code to follow each kind of interaction (ICOL)

If $ICOL = 2 \rightarrow +1$ in relevant body counter

Body 18 : source material (or Mylar® film)

Body 19 : source container (or plastic ring)

(Scattering angles around $\pi/2$)

Monte Carlo simulation for 60 keV photons Point source at 10 cm

Monte Carlo simulation for 60 keV photons Point source at 10 cm

Volume effect

Volume effect

Monte Carlo simulation for 60 keV photons: Solution (H_2O) in a 50 cm³ plastic container at 10 cm

Volume effect

Monte Carlo simulation for 60 keV photons: Solution (H_2O) in a 50 cm³ plastic container at 10 cm

Peak fitting – Tailing

Detector response widening

Peak fitting – Tailing

Detector response widening – Volume source

Peak fitting – Efficiency transfer

- Activity measurement of ¹³³Xe derived from:
 Calibration with ¹³³Ba point source
- Efficiency transfer ?

Peak fitting – Tailing

Suggestions on tailing due to scattering:

- Fit only the Gaussian part (more weight)

- For efficiency transfer : use MC results (FEP only or including scattering)

Your opinion ?

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019