GAMMA-SPECTROMETRY

INTRODUCTION
General characteristics

Energy resolution

Peak area

Attenuation

Corrective factors
Gamma-ray spectrometry is a fast and widespread method

- used to identify radionuclides and
- to determine their activity.

- Non-destructive method
- Simple sample preparation
- But relative method (requires calibration using standards)

Mature technique

- Button-push method *(which software ?)*
- Hidden difficulties / uncertainties factors
- Evolution
 - Large detectors
 - Digital electronics
 - Compton-suppression
RESULTS DEPENDING ON EQUIPMENT CHARACTERISTICS:

HPGe detector (other detectors for low-energy X-rays (Si(Li), SDD), room temperature detectors NaI(Tl), CdTe, CZT…), etc.)

Sample (material, shape)

Measurement conditions
$^{152}\text{Eu} - \text{Point source at 10 cm from the detector window (100 cm}^3\text{) HPGe detector}$

Peaks (full-energy peaks):
- position = energy -> radionuclide identification;
- net area = activity

$$N_p(E) = NE(E) \cdot \varepsilon(E) = A \cdot I(E) \cdot t \cdot \varepsilon(E)$$

Other features (continuum): partial energy deposition, scattering, escape …
\[N_P(E) = NE(E) \cdot \varepsilon(E) = A \cdot I(E) \cdot t \cdot \varepsilon(E) \]

or simply:
\[n_i = A \cdot I_i \cdot \varepsilon_i \]

\(A \): activity (Bq)
\(n_i \): net peak area
\(I_i \): photon emission intensity
\(\varepsilon_i \): detection efficiency

-> 3 results depending on available input parameters:

\[\varepsilon_i = \frac{n_i}{A \cdot I_i} \quad A = \frac{n_i}{I_i \cdot \varepsilon_i} \quad I_i = \frac{n_i}{A \cdot \varepsilon_i} \]

Hidden difficulties: peak area, efficiency for any energy (see “Fitting” section), corrective factors
RADIOACTIVE DECAY DATA

- Decay scheme: Difference emission/transition
- Gamma transition = gamma emission + internal conversion

\[T_\gamma = I_\gamma + I_C \]

- Conversion coefficient: \[\alpha_T = \frac{I_\gamma}{T_\gamma} \]

\[I_\gamma = \frac{T_\gamma}{(1 + \alpha_T)} \]

- \(^{51}\text{Cr} \): \(T_\gamma = 9.91(2) \); \(I_\gamma = 9.89(2) \)
 \(\alpha_T = 0.00181 \)

\[I_\gamma = \frac{9.91}{1.00181} = 9.89 \]

- \(^{103m}\text{Rh} \): \(T_\gamma = 100 \); \(I_\gamma = 0.069(4) \)
 \(\alpha_T = 1448 \)

\[I_\gamma = \frac{100}{1449} = 6.9 \]
Example:

^{103m}Rh X-ray emission intensities (short half-life)

Difficulty to derive « recommended » data requires carefully detailed information

In October 2005, the General Meeting of the *International Committee for Radionuclide Metrology* (ICRM) formally approved the recommendation made by the Nuclear Data Working Group of using the DDEP evaluated decay data in all future nuclear data studies.
Size -> Efficiency
P or N (low energies)

Photon interaction -> movement of electrons -> electron-hole pairs

\[E_e = E - U_e \]

Fluorescence

Photoelectric absorption

\[E' = E - E_e \]

Rayleigh scattering

Compton scattering

Pair production

\[m_e c^2 \approx 511 \text{ keV}, \text{ electron rest energy} \]
Different shapes, types and sizes

Different shapes, types and sizes -> influence on detection efficiency

« Relative efficiency » compared to 3" X 3" NaI (TI)

For 1332 keV (60Co at 25 cm)
(FEP efficiency = 1.2×10^{-3})
Detector + electronic modules (analog/digital)

Preamplifier
- RC
- Reset

Amplifier
- Adapt the shape of the pulse – time constant versus count rate

Multi-channel Analyzer
- Number of channels: 10^3 to 1.6×10^4

It is important to characterize the whole spectrometry chain (detector + electronics)
General characteristics

Energy resolution

Peak area

Attenuation

Corrective factors
Energy resolution:

$\Delta E \text{ (keV)} : \text{FWHM : Full Width at Half Maximum of a peak}$

- Depends on the energy
- Varies from $0.16 \text{ keV (@6 keV)}$ to $2.5 \text{ keV (@1,3 MeV)}$, depending on the detector

Resolving power: $\Delta E / E \text{ (%) : Some } 10^{-3}$

(5 – 10 % for NaI(Tl))

Characteristic of the spectrometer quality:

- separation of closely spaced peaks
- detection limit
Initial photon emission: Monoenergetic line (source) ($\Delta E = \text{some meV}$)

Widening and distortion of the resulting peak (spectrum)

- **Widening**: Gaussian effects:
 - fluctuation of the number of charge carriers: ΔE_s
 - electronic noise: ΔE_E

- **Non Gaussian effects**:
 - Charges collection: ΔE_C
 - Drift of the operating system (detector + electronics)
 - Pile-up

Result: in the resulting spectrum: 'peak' with finite width (keV) and more or less symmetrical shape

First approximation: Gaussian shape
ENERGY RESOLUTION

GAUSSIAN DISTRIBUTION

Distribution centered on energy E_0 with standard deviation, σ

Characteristics:

Full width at half maximum of the Gaussian

FWHM (ΔE) = 2,355 σ

Area: $S = (2\pi)^{1/2} \sigma A$

$$G(E) = A \cdot \exp\left(\frac{(E - E_0)^2}{2\sigma^2}\right)$$
STATISTICAL NOISE : ΔE_S

Cause: fluctuations of the number of charge carriers n

E: incident energy (some keV)

w: mean pair creation energy (some eV)

$n = \frac{E}{w}$

Hypothesis: Poisson statistics: $\sigma_n = \sqrt{n}$

Standard deviation of the number of charge carriers

\rightarrow Standard deviation of the deposited energy ($n\ w$)

$\sigma_{Es} = w \cdot \sigma_n = w \cdot \sqrt{n} = w \cdot \sqrt{\frac{E}{w}} = \sqrt{w \cdot E}$
Example: (at 77K: \(w = 2.96 \) eV in Ge
\(w = 3.76 \) eV in Si)

\[E = 1 \text{ MeV} \rightarrow \text{in Ge: } n = 3.3 \times 10^5 \]

\[\sigma_{ES} = \sqrt{w \cdot E} = \sqrt{2.96 \cdot 10^6} = 1.72 \text{ keV} \]

\[\Delta_{ES} = 2.355 \cdot \sigma_{ES} = 4.05 \text{ keV} \]

The observed width is much lower (\(< 2 \) keV)

\[\rightarrow F = \text{Fano factor: } F = \frac{\text{Observed variance}}{\text{Poisson predicted variance}} \]
\[\Delta_{Es} = 2.355 \cdot \sqrt{F \cdot \sigma_{Es}^2} = 2.355 \cdot \sqrt{F \cdot w \cdot E} \]

Fano factor < 1 (charges creation are not independent: correlations)

Measured for Ge and Si: value depending on the quality of the crystal?

Experimental values: (increasing versus time …)

Ge: 0.07 to 0.12

Si: 0.08 to 0.12
Preamplifier – amplifier

- Independent on the energy

- Can be determined using a pulser: input at the preamplifier « test »
CHARGE COLLECTION: ΔE_c

Causes: trapping of charge carriers and ballistic deficit

- Trapping (impurities or crystal imperfections): loss of charge or slowing of the rate of charge collection

- Ballistic deficit (electron-hole mobility (15% difference in Ge))

Depends on the quality of the crystal and on the electric field (position of the interaction in the detector)

Consequence of the loss of charge: Low-energy tailing

Improvement:

- Increasing the voltage (recommended value by supplier)
- Rejecting pulses with slow rise-time
- Using collimator to avoid interaction in low electric field regions (front corners)
\[
\Delta E^2 = \Delta E_S^2(E) + \Delta E_C^2 + \Delta E_E^2
\]

\(\Delta E_S\) = statistical noise (dependent on the energy)
\(\Delta E_C\) = charge collection
\(\Delta E_E\) = electronical noise

First approximation:

\[
\Delta E^2 = K + \Delta E_S^2(E)
\]

\[
\Delta E^2 = K + 2.355^2 (F \cdot w \cdot E)
\]
\[\Delta E^2 = K + 2.355^2 (F \cdot w \cdot E) \]

Linear fitting:

FWHM\(^2 = 0.00182E + 0.4141 \]

K = 0.414 keV (electronics + charge collection)

\((2.355)^2 F \cdot w = 0.00182 \implies F = 0.110\)
FWTM (Full Width at Tenth Maximum)

FWFM (Full Width at Fiftieth Maximum)

These values can be compared to those characteristic of a Gaussian (ideal?) peak:

\[
\frac{\text{FWTM}}{\text{FWHM}} = 1.82 \\
\frac{\text{FWFM}}{\text{FWHM}} = 2.38
\]

Information about the peak shape, particularly on its base (collection defects)
General characteristics

Energy resolution

Peak area

Attenuation

Corrective factors
For quantitative analysis: determination of $N(E) = \text{peak area}$

(number of photons with energy E that deposited all their energy in the detector)

Spectrum -> "Regions Of Interest" (ROI’s) containing one or several peaks
Automatic peak search
Peak region:
\[Y(E) = G(E) + (aE + b) \]
(Gaussian + linear background)

Convolution by a « top-hat » filter
With zero area

Width = Gaussian width
(requires resolution calibration)

\[Y^C = Y \otimes TF \]
Presence of a peak when \(Y^C > T \) (threshold)

Peak FWHM <-> channels where \(Y^C = 0 \)

-> definition of a ROI

Peak detection sensitivity is dependent on the threshold value:

T too low -> spurious peaks
T too high -> missing peaks
DERIVATIVES

First derivative: change of sign at the maximum peak position.

Second derivative: negative minimum at the position peak.

![Graph showing derivatives and automatic peak search](image-url)
Result of automatic peak search

Expert visual checking recommended!
Processing of a single peak ROI

- Peak superimposed on a continuous background
Background

Peak with energy E_0 in region $[f,l]$ first channel $= f$; last channel $= l$

- **Step**:

 $F(i) = 1$ for $E < E_0$

 $F(i) = 0$ for $E > E_0$

- **Linear**:

 $F(i) = 1 - \frac{(i - f)}{(l - f)}$

- **Galton curve**:

 $F(i) = 1 - \frac{\sum_{f}^{i} Y_i}{\sum_{f}^{l} Y_i}$
Background

<table>
<thead>
<tr>
<th>Background type</th>
<th>Gross area</th>
<th>Net area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear (33 channels)</td>
<td>943188</td>
<td>938907</td>
</tr>
<tr>
<td>Linear (25 channels)</td>
<td>942037</td>
<td>938191</td>
</tr>
<tr>
<td>Linear (18 channels)</td>
<td>940938</td>
<td>937830</td>
</tr>
<tr>
<td>Step (33 channels)</td>
<td>943188</td>
<td>938385</td>
</tr>
<tr>
<td>Galton (33 channels)</td>
<td>943188</td>
<td>938577</td>
</tr>
</tbody>
</table>
General characteristics

Energy resolution

Peak area

Attenuation

Corrective factors
Use of screen to reduce counting rate (X-rays, Bremsstrahlung)

Beer-Lambert law

Mass attenuation coefficients
Attenuation of a narrow parallel photon beam

\[l(x) = l_0 \cdot e^{-\mu x} = l_0 \cdot e^{-\frac{\mu}{\rho} \rho x} \]

\(\rho \) = density (\(g.cm^{-3} \))
\(\mu \) = linear attenuation coefficient of material \(i \) for energy \(E \) (\(cm^{-1} \))
\(\rho x \) = mass thickness (\(g.cm^{-2} \))
\(\mu / \rho \) = mass attenuation coefficient (\(cm^2.g^{-1} \))

\(\mu \) depends on \(E \) and \(Z \)
Practical parameter: Attenuation (absorption + scattering) coefficient

Partial interaction coefficients depend on the energy, \(E \), and the material (\(Z \)):

- **Photoelectric absorption**: \(\tau_i(E) \)
 \[\tau \approx \text{const} \cdot Z^{4.5} \cdot E^{-3} \] (dominant at low energies)

- **Compton scattering**: \(\sigma_i(E) \)
 \[\sigma \approx \text{const} \cdot Z \cdot E^{-1} \]

- **Pair production effect**: \(\kappa_i(E) \)
 \[\kappa \approx \text{const} \cdot Z^2 \] (only if \(E > 1022 \text{ keV} \))

For practical use: tables function of \(Z \) and \(E \)

Tables: cross sections (1 barn = \(10^{-24} \text{ cm}^2 \)) or mass attenuation (\(\text{cm}^2 \cdot \text{g}^{-1} \))

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Linear attenuation coefficient ((\text{cm}^{-1}))</th>
<th>Mass attenuation coefficient ((\text{cm}^2 \cdot \text{g}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectric</td>
<td>(\tau)</td>
<td>(\tau / \rho)</td>
</tr>
<tr>
<td>Compton</td>
<td>(\sigma)</td>
<td>(\sigma / \rho)</td>
</tr>
<tr>
<td>Pair production</td>
<td>(\kappa)</td>
<td>(\kappa / \rho)</td>
</tr>
<tr>
<td>Total</td>
<td>(\mu = \tau + \sigma + \kappa)</td>
<td>(\mu / \rho = \tau / \rho + \sigma / \rho + \kappa / \rho)</td>
</tr>
</tbody>
</table>
Photoelectric absorption coefficient = sum of photoelectric effect in each electronic shell (subshells):

\[\tau = \tau_K + (\tau_{L1} + \tau_{L2} + \tau_{L3}) + (\tau_{M1} + \tau_{M2} + \tau_{M3} + \tau_{M4} + \tau_{M5}) + \ldots \]

If \(E < \) binding energy of shell \(i \), \(\tau_i = 0 \)

For \(E = E_i \) : absorption discontinuity: maximum ionisation probability in shell \(i \)

\(\tau \) variation versus the energy shows discontinuities corresponding to binding energies of electrons shells and subshells K, L, M...

Since \(\mu = \tau + \sigma + \kappa \)

\(\mu \) has the same discontinuities, function of the material atomic structure (Z)
Germanium mass attenuation coefficient

Ge binding energies:
- L1: 1.4143
- L2: 1.2478
- L3: 1.2167
- K: 11.1031
Lead mass attenuation coefficient

Pb binding energies:
- M1: 3.8507
- M2: 3.5542
- M3: 3.0664
- M4: 2.5856
- M5: 2.4840
- L1: 15.8608
- L2: 15.2000
- L3: 13.0352
- K: 88.0045
Composition known -> calculation
Composition unknown -> measurement

Calculation: Attenuation coefficients table

- XCOM (NIST Database)
- Example for HCl 1N
Defining the mass fraction of each compound for HCl 1N:

Matrix : HCl 1N = 1 mole of HCl in 1 liter of solution

HCl 1N density = 1.016 (1L = 1016 g)

Mass of one HCl mole = 1 + 35.45 = 36.45 g

Resulting input parameters for XCOM

Compound 1: HCl
Mass fraction: 36.45

Compound 2: H₂O
Mass fraction = 1016 – 36.45 = 979.55
Attenuation coefficients

Attenuation coefficients

XCOM results
Principle: Use the unknown matrix and a collimated photon beam

Two successive measurements
- Empty container
- Container filled with unknown matrix with thickness x
For each energy:

\[N_2(E) = N_1(E) \cdot \exp (-\mu(E) \cdot x) \]

Thus:

\[\mu(E) = \frac{1}{x} \ln \left(\frac{N_2(E)}{N_1(E)} \right) \]

Associated relative uncertainty:

\[
\frac{u^2(\mu)}{\mu^2} = \frac{u^2(x)}{x^2} + \frac{1}{\ln^2 \left(\frac{N_0(E)}{N(E)} \right)} \left(\frac{u^2(N_0(E))}{N_0^2(E)} + \frac{u^2(N(E))}{N^2(E)} \right)
\]
Dedicated experimental arrangement:
Example of steel sample

Example of steel sample

60Co in steel sample

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>121.78</td>
<td>2248977</td>
<td>0.1%</td>
<td>328827</td>
<td>0.2%</td>
<td>0.1511</td>
<td>0.2%</td>
<td>1.890</td>
<td>1.0%</td>
<td>0.480</td>
<td>1.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244.70</td>
<td>412482</td>
<td>0.2%</td>
<td>159477</td>
<td>0.3%</td>
<td>0.3995</td>
<td>0.3%</td>
<td>0.917</td>
<td>1.1%</td>
<td>0.233</td>
<td>1.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>344.28</td>
<td>1096300</td>
<td>0.1%</td>
<td>491001</td>
<td>0.1%</td>
<td>0.4628</td>
<td>0.2%</td>
<td>0.770</td>
<td>1.0%</td>
<td>0.196</td>
<td>1.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>411.12</td>
<td>66423</td>
<td>0.4%</td>
<td>32317</td>
<td>0.6%</td>
<td>0.5028</td>
<td>0.7%</td>
<td>0.688</td>
<td>1.4%</td>
<td>0.175</td>
<td>1.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>443.97</td>
<td>108192</td>
<td>0.3%</td>
<td>52366</td>
<td>0.4%</td>
<td>0.5001</td>
<td>0.5%</td>
<td>0.693</td>
<td>1.3%</td>
<td>0.176</td>
<td>1.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>778.90</td>
<td>399743</td>
<td>0.2%</td>
<td>226912</td>
<td>0.2%</td>
<td>0.5866</td>
<td>0.3%</td>
<td>0.533</td>
<td>1.1%</td>
<td>0.135</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>867.38</td>
<td>131623</td>
<td>0.3%</td>
<td>77692</td>
<td>0.4%</td>
<td>0.6099</td>
<td>0.5%</td>
<td>0.494</td>
<td>1.4%</td>
<td>0.125</td>
<td>1.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>964.08</td>
<td>454460</td>
<td>0.1%</td>
<td>273614</td>
<td>0.2%</td>
<td>0.6221</td>
<td>0.2%</td>
<td>0.475</td>
<td>1.1%</td>
<td>0.120</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1085.84</td>
<td>371627</td>
<td>0.2%</td>
<td>228130</td>
<td>0.2%</td>
<td>0.6343</td>
<td>0.3%</td>
<td>0.455</td>
<td>1.2%</td>
<td>0.116</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112.08</td>
<td>428505</td>
<td>0.2%</td>
<td>266091</td>
<td>0.2%</td>
<td>0.6417</td>
<td>0.2%</td>
<td>0.444</td>
<td>1.1%</td>
<td>0.113</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1212.95</td>
<td>43790</td>
<td>0.5%</td>
<td>27500</td>
<td>0.6%</td>
<td>0.6489</td>
<td>0.8%</td>
<td>0.432</td>
<td>2.0%</td>
<td>0.110</td>
<td>2.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1299.14</td>
<td>53310</td>
<td>0.4%</td>
<td>34077</td>
<td>0.5%</td>
<td>0.6605</td>
<td>0.7%</td>
<td>0.415</td>
<td>1.9%</td>
<td>0.105</td>
<td>2.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1408.01</td>
<td>638601</td>
<td>0.1%</td>
<td>418820</td>
<td>0.2%</td>
<td>0.6777</td>
<td>0.2%</td>
<td>0.389</td>
<td>1.1%</td>
<td>0.099</td>
<td>1.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material mass (m) and Density (ρ)

<table>
<thead>
<tr>
<th>Material mass (m)</th>
<th>Density (ρ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75,8032 g</td>
<td>3.5 cm</td>
</tr>
<tr>
<td>77741,46 cm</td>
<td>1 cm</td>
</tr>
<tr>
<td>74006,12 cm</td>
<td>3.94 g.cm⁻³</td>
</tr>
<tr>
<td>77393,3 cm</td>
<td>1,0001E+00</td>
</tr>
<tr>
<td>80226,6 cm</td>
<td>1,0001E+00</td>
</tr>
</tbody>
</table>

Calculation of μ(cm⁻¹)

\[\mu(\text{cm}^{-1}) = - \ln \left(\frac{l}{l_0} \right) \]

Calculation of \(\mu(\text{cm} \cdot \text{g}^{-1}) \)

\[\mu(\text{cm} \cdot \text{g}^{-1}) = \frac{\mu(\text{cm}^{-1})}{\rho} \]

ICRM- GSWG – INTRODUCTION 51
Example of steel sample

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>(\mu) (cm(^{-1}))</th>
<th>(\mu) (cm(^2).g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1173,2</td>
<td>0,4212</td>
<td>0,1069</td>
</tr>
<tr>
<td>1332,5</td>
<td>0,3917</td>
<td>0,0994</td>
</tr>
</tbody>
</table>
OUTLINE

General characteristics

Energy resolution

Peak area

Attenuation

Corrective factors
Half-life correction
Decay correction (short half-lifes)
Attenuation correction (screen)
Self-attenuation correction (see “Self attenuation” section)
Geometry correction (source-detector distance)
Coincidence summing correction (see “Coincidence summing ” section)

Background peaks
Escape peaks (annihilation or characteristics Ge X-rays)
Dead time correction
In-flight annihilation correction (Beta plus emitters)
Measurement at a date different from the reference time
To get the counting rate at the reference time: \(C_T \)

\(T_{1/2} \): radionuclide half-life
\(T_0 \): reference time
\(T_m \): acquisition start time

\[
C_T = \exp \left(\ln(2) \cdot \frac{(T_m - T_0)}{T_{1/2}} \right)
\]
The radionuclide decays during the measurement

If T_r not negligible versus $T_{1/2}$:

$$C_D = \frac{\ln(2) \cdot (T_r/T_{1/2})}{1 - \exp\left(-\ln(2) \cdot (T_r/T_{1/2})\right)}$$

Or:

$$C_D = \frac{\lambda \cdot T_r}{1 - \exp(-\lambda \cdot T_r)}$$

where

$$\lambda = \frac{\ln(2)}{T_{1/2}}$$

$T_{1/2}$: radionuclide half-life

T_r: acquisition time (clock - real time !)

T_m: acquisition start time
Efficiency calibration

- Characteristic of the detector.
- Defined for an incident energy and source-detector geometry

Sample with different geometry to be measured

- self-absorption
- geometry variation (solid angle)
Calibration sources
Large number of geometries and matrices:
- point source
- disk-shape samples (filters)
- cylindrical geometries
 - liquid
 - solid
 - gas
- Marinelli geometries (Environment)
 - liquid
 - solid
 - gas
Source-to-detector distance can be adapted according to the counting rate

Small distance : Higher count rate

- Smaller counting time
- Less influence of the environmental background
- Possibility to use smaller samples (less self-absorption)

Large distance : Lower count rate

- Less pile-up
- Reduction of the coincidence summing effect
- Accuracy of the position (relative uncertainty)

Compromise between counting time and corrective factors
Efficiency transfer principle (Moens)

Calibration geometry:
Full-energy peak efficiency: \(\varepsilon_0(E) = \varepsilon_0^G \cdot \varepsilon^I(E) \)

Where \(\varepsilon_0^G = \frac{\Omega_0}{4\pi} \)

Measurement geometry:
Full-energy peak efficiency: \(\varepsilon_m(E) = \varepsilon_m^G \cdot \varepsilon^I(E) \)

Where \(\varepsilon_m^G = \frac{\Omega_m}{4\pi} \)

\[\varepsilon_m(E) = \varepsilon_0(E) \cdot \frac{\Omega_m}{\Omega_0} \]

Only valid for point sources
Volume: self-attenuation (+ matrix + source dimensions)
Efficiency calibration at 100 keV = 0.0171

Detector radius : r = 2 cm

Source - detector distance for calibration : d₀ = 10 cm

\[\Omega_0 = 2\pi \left(1 - \frac{d_0}{\sqrt{d_0^2 + r^2}} \right) = 0.122 \]

Source - detector distance for measurement (m₁) : \(d_{m1} = 20 \) cm

\[\Omega_{m1} = 0.031 \text{ sr} \quad \frac{\Omega_{m1}}{\Omega_0} = 0.25 \]

Source - detector distance for measurement (m₂) : \(d_{m2} = 5 \) cm

\[\Omega_{m2} = 0.449 \text{ sr} \quad \frac{\Omega_{m2}}{\Omega_0} = 3.7 \]
at 20 cm :

\[\varepsilon_{m1}(100) = \varepsilon_0 (100) \cdot \frac{\Omega_{m1}}{\Omega_0} = 0.0171 \cdot \frac{0.031}{0.122} = 0.0043 \]

at 5 cm :

\[\varepsilon_{m2}(100) = \varepsilon_0 (100) \cdot \frac{\Omega_{m2}}{\Omega_0} = 0.0171 \cdot \frac{0.449}{0.122} = 0.0629 \]

Approximation

\[\Omega_0 = 2\pi \left(1 - \frac{d_0}{\sqrt{d_0^2 + r^2}}\right) \approx 2\pi \left(1 - \left(1 - \frac{r^2}{2d^2}\right)\right) = \pi \cdot \frac{r^2}{d^2} \]

\[\frac{\Omega_m}{\Omega_0} = \frac{d_0^2}{d_m^2} \]

\[\varepsilon_{m1}(100) = \varepsilon_0 (100) \cdot \frac{d_0^2}{d_{m1}^2} = 0.0171 \cdot \frac{(10)^2}{(20)^2} = 0.0043 \quad \Delta = \text{negligible} \]

\[\varepsilon_{m2}(100) = \varepsilon_0 (100) \cdot \frac{d_0^2}{d_{m2}^2} = 0.0171 \cdot \frac{(10)^2}{(5)^2} = 0.0684 \quad \Delta = +9\% \]
THANK YOU FOR YOUR ATTENTION!