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• Wikipedia – (surprisingly) good source of information
for physics

Product catalogues of 
manufacturers

•Ortec
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•(PGT)

•(Tennelec)

•(Oxford Instr.)
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The High Purity Germanium detector (HPGe-detector

The "Work-horse" of the modern gamma-ray spectrometry laboratory

“good” resolution

“good” efficiency

Easy to operate

Reasonable robust …….

Price...

......

Useful for: Radiopurity studies, investigate unknown samples, 

secondary standardisation etc.
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The High Purity Germanium detector (HPGe-detector)
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5

Extract from Knoll

“Radiation Detection and 

Measurements”

108mAg + 110mAg

Ge-resolution: ~ 0.18%

NaI resolution: ~ 6% 

@ 662 keV

~factor of 35 difference
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Extract from Knoll

“Radiation Detection and 
Measurements”

The effect of detector resolution1.75 keV FWHM

5.6 keV 

FWHM

11 keV 

FWHM
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The effect of detector 

size

Extract from Knoll

“Radiation Detection and 
Measurements”
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Ge-detectors

=
efficiency

(FWHM × background)½

●The workhorse of modern radiometric laboratories

● Li-drifting first described in 1960 (Pell)

● First Ge-detector in 1963 (Tavendale):

1 cm3,  same resolution as a NaI detector.

● Improved detection limits if FoM is maximised  (important for low-

level measurements)
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Development in germanium detector technology 
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Development in germanium detector technology 
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M. Hult, Low-level gamma-ray spectrometry using Ge detectors, Metrologia

44 (2007) pp. S87-S94. And: Erratum, Metrologia 44 (2007) p. 425. 
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11

pn+

Nelectron · dn+ = Nholes · dp

-+

dn dp

d ~ sqrt(V) 

A reversed biased
p-n junctionBasically a reversed biased diode
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Li-contacts in HPGe

• The n+ contacts are made by diffusing Li into the Ge for a short time 

• (by heating and applying a voltage)

• In germanium at room temperature Li diffuses about 0.1 mm in 1 
year. 

• => A detector that was kept at room temperature for long has 
thicker deadlayers

• Today, manufacturers try to (succeed in) producing Li-free contacts.
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Ge-production (i)
1) Raw material: residue from e.g. Zn-ore 

with 3-5% Ge or re-cycled electronics

2) Reduction of Ge-oxide

3) Zone-refinement => 
polycrystal

repeat
4) Czochralski  growth  => 

single crystal

Measurements

�Resistivity 

� Hall 

� DLTS

Resistivity 
measurement 
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2-3 days

Small “low power”, some 
gas

Needs clean room for large 
HPGe-detectors

Many secret recipes

Nowadays 4” for HPGe and 
6” for other applications

Ge-production (ii)
Czochralski crucible pulling ...
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Ge-production (iii)

Czochralski
crucible pulling...



16 CEA, Paris, June 12, 2018

Ge8

Ge3 Ge-T4Radiography
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BEGe – Broad Energy Ge
p-type (special process)

Planar detector
(Canberra notation – similar detector available from others)

Ultra LEGe
n-type

LEGe – Low Energy Ge
n-type

“Active” 
volume

Diffused 
contact N+

Implanted 
contact P+
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Coaxial detector
(Canberra notation – similar detector available
from others)

Coaxial
(P-type): XtRa

(Extended range)
(p-type):

REGe
Reversed Electrode Ge
(n-type):

“Active” 
volume

Diffused 
contact N+

Implanted 
contact P+

Well-
detector:
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(i) Mechanical “shaping”

(ii) Grinding

(iii) Contact structures 
(etching, diffusion, 
implantation)

Ge-production (iii)
Crystal treatment
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Bulletization

• Weak electric field in corners => long rise time => not 
completely collected within reasonable integration time => 
rounding of edges       =bulletization

• Important to include in computer model!!!

• New crystals with sharp edges may have poor charge 
collection in corners => difficult with Monte Carlo simulations
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Coaxial

Planar

Array detector

Multi-segmented
Different crystal configurations
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1. Primordial (Here since the formation of the earth)

2. Anthropogenic (man-made)

3. Cosmogenic (Induced by cosmic rays)
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1. Primordial radionuclides 
(natural, existing since the formation of the earth )
Earth is about  4.5·10 9 years 

238U, T½= 4.5×109 years 
235U, T½= 0.7×109 years

232Th, T½= 14×109 years
40K, T½= 1.3×109 years

Decays to 

radium-226, radon-222, 

polonium-210, lead-210 etc.

Less common ones
La-138, Rb-87,  Sm-147, Lu-176, Re-187

1 Bq 238U ⇒ 14 Bq 
in the whole decay chain

More in my next presentation
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2. Anthropogenic (man-made)

Fission products: 137Cs, 134Cs,85Kr, 125Sb, 131I,129I, …..
Activation products:   60Co, 41Ar, ….

Note: always difficult with pure beta emitters; 90Sr, 3H, 115In  - bremsstrahlung

Normally no problem for background, but after Chernobyl 
many (also new) detectors were contaminated
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3. Cosmogenic  (some examples… also spallation reactions)
# target reaction P rod u ced

rad ion u clid e
γ-ray  en ergy T 1/2 S id e reaction

9 59C o (n ,p) 59Fe 1099; 1291 44.53  d (µ -,0n)
10 60N i (n ,p) 60C o 1173.2 ; 1332.5 5 .271 y
13 63C u (n ,4p6n) 54M n 834.84; 840.8c 312.3  d (µ -,3p5n)
14 63C u (n ,2p5n) 57C o 122.1 ; 136.5 ; 143.6c 271.79  d (µ -,p4n)
15 63C u (n ,2p4n) 58C o 810.8 ; 817.9c 70.86  d (µ -,p3n)
16 63C u (n ,α ) 60C o 1173.2 ; 1332.5 5 .271 y
17 65C u (n ,γ) 66*C u 186.0
18 65C u (n ,n ’) 65*C u 1115.5 ; 1481.7
19 70G e (n,γ) 71mG e 23.5 ;174.9; 198.3 22 m s 72G e(n ,2n)
20 70G e (n,γ) 71G e 10.37 11.34  d
21 70G e (n,3n) 68G e 10.37 271 d
22 70G e (n,2p4n) 65Z n 1125.2 244.3  d (µ -,p4n)
23 72G e (n,γ) 73mG e 13.3 ; 53 .4 ; 66 .7 0 .5  s 74G e(n ,2n)
24 72G e (n,n ’) 72*G e 691.0b; 834b

Many reactions in Cu ! (and Ge)

In Ge: 68Ge, 57Co, 58Co, 60Co, 65Zn, 54Mn, 63Ni,55Fe



26 CEA, Paris, June 12, 2018

⇒ Radon

⇒ Laboratory environment except radon (i.e. radioactivity and 

neutrons from fission and (α,n) reactions in surrounding materials)

⇒ Directly induced by cosmic rays

⇒ Indirectly induced by cosmic rays (Activation of Ge-crystal, 

cryostat and shield)

⇒ Radioimpurities in detector and shield

Main background sources –
a practical classification scheme
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⇒ Enables improvement (=reduction) of background

⇒ Enables improved design for future detector systems

Important to identify location of background sources
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1) Radon – monitor Rn-concentration and the background simultaneously.  
Extrapolate to zero Rn concentration to see count rate from other sources

2) Radioimpurities in shield and detector – Cover endcap with  a very 
pure material (Hg) and compare the difference in count rate

3) Environment – Vary the shield thickness (both lead and borated paraffin)-
very cumbersome!!  

4) Activation – Note count rate of activation peaks from crystal (e.g. Zn-65 
at 1115+8.3 keV) and make simulations to find total count rate.

5) Muons - Correlate the background changes with changes in cosmic ray 
flux (see e.g. the Kiel neutron monitor on internet)  or use a muon detector
(Extrapolate to zero or have your detector system tested underground)

……..

Ways to quantify importance of background sources
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⇒ Due to variation with time, it is necessary to use the standard-
deviation of the background in the uncertainty budg et

Radon in air
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• Keep a log of the background – both background peaks and certain 
intervals 

• Measure background in different shields – a good way to 
understand if a shield is bad or the detector is bad. (if background is 
good, then both must be good)

Quite cumbersome and time consuming. Moving lead and 
detectors, re-doing calibrations,…. 

Other ways to understand background

…..Unless there are special lead shields that allow easy removal of detectors ………

⇒ Possibility for generating interesting articles 
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Earth

p e± ntherm nfast
±

0.1 2 40 60 200 200 1011

at surface   (m-2s-1)

225 m 
underground   

(m-2s-1)

ntherm nfast

<2 <2 0.1 1011

Primary cosmic ray:

90 % p
9 % α

1 % heavier nuclei (up to Fe)Atmosphere
π0

π±
π±

103 m-2 s-1

e- e+

µ± υµ

Extremely high energies
from outer space,

GeV range from sun

p, n, 7Be, 14C, 36Cl, …. 

µ±

µ± υ

υπ±
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HADES

Overburden:
~ 175 m sand
~ 50 m clay

Location of
IRMM’s ULGS

setupFirst shaftSecond shaft
Constructed 1999

Test driftConnecting gallery
Constructed 2003

PRACLAY gallery

22
3 

m

84 m
67 m

39 m

{

Overburden:
~ 175 m sand
~ 50 m clay

Location of
IRMM’s ULGS

setupFirst shaftSecond shaft
Constructed 1999

Test driftConnecting gallery
Constructed 2003

PRACLAY gallery

22
3 

m

84 m
67 m

39 m

{
HADES = High Activity Disposal Experimental Site 
– Operated by EURIDICE and located at SCK•CEN in Mol

JRC-Geel's
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HADES - The flux of muons is reduced a factor ~104
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Background Comparison – Gamma-ray spectrometry

A

B

C

D

A: “Normal” 
B: “Low-level” 

D: HADES
E: Gran Sasso

511 keV

2614 keV

Ge(n,n’ γ)

Pb(n,n’ γ)

E

1460 keV

C: Felsenkeller

0.0001
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0.01

0.1

1

10
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10000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
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Low background

Low level Gamma-ray Spectrometry (LGS) = 
Gamma-ray spectrometry using a detector and 
shield built from selected radiopure materials and 
a shield of 

Ultra Low level Gamma-ray Spectrometry 
(ULGS) = LGS with additional measures such as 
placement in an underground laboratory or use of 
a muon shield. 
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Low background

Advice:

A) Don’t buy a Low background detector unless 
you really need to!  

(i) more fragile (ii) more expensive 

B) Don’t place a detector for underground use, 
above ground 

activation of crucial parts
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Low 
Background 
Detector

Pre-amp outside lead shield

Endcap, cryostat and front-end-
electronics from selected 

radiopure materials

Inner 2.5 cm from ULB lead (2 Bq/kg)

Tube for nitrogen “flushing”
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Extra benefits underground

� Possibility to use thick lead shield (no increase of 

background after 15 cm)

� Possibility to use thick Cu shield as lining => not 

necessary with the best (most expensive) lead

� No activation of Ge
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Depth 
(m w.e.) 

Idiom Characteristics 

< 10 Not underground  
or 

above ground 

• The soft component (e, e+, photons) is strongly red uced but still plays a 
part.  

• Very little reduction of muon flux and neutron indu ced by muons.  
• Muon shields are useful. 

10 – 100 Shallow 
underground 

• The soft component of the cosmic ray has vanished.  
• The muon flux is reduced a factor of 5-50, but Muon  shields are useful. 
• There is still a significant flux of neutrons produ ced by muons (reduction 

of factor 2-10).  
• The activation of crystal and shield are still impo rtant factors. 

100 – 1000 
Semi deep 

underground 

• Cosmogenic activation can be neglected.  
• A slight improvement can be obtained by discriminat ing against muons.  
• The neutron flux is dominated by ( α,n) sources  

> 1000 Deep 
underground 

• The influence of the cosmic rays can be neglected.  
• The only source for neutrons are ( α,n) reactions. 

 

Source: Hult et al. Acta Chimica Slovenica, 2006.
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Cosmic-rays have 
VERY high energies. 
Energies up to 1020 eV 
have been measured

(=108 TeV)

Proton energy
TeVGeV 100 

GeV
10 

GeV



43 CEA, Paris, June 12, 2018

Cosmic ray interactions

HPGe-detectorShield

Also muons hitting the shield will 
generate pulses in the detector
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No air transport of a low background detector!!
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Weird triangular peaks
N
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74Ge(n,n’γ)
595.8 keV

72Ge(n,n’γ)
691.0 keV

63Cu(n,n’γ)
669.6 keV

•“Extra” energy from recoiling 
target nuclei. 

•Depends on scattering angle
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Other tricky peaks

811 keV (γ-ray) + 7 keV (bind.E) = 818 keV

58Co (E.C.)

From 40K, BUT also a peak at 1459.2 keV from 228Ac (Pγ = 
1.06% or 0.83%) => take care to quantify 40K if there is a 
relatively high amount of 232Th/228Ra in the sample.

1460.8 keV

661.7 keV
137Cs BUT also 1173-511 keV.

122.1+14.4 keV (γ-rays) + 7.1 keV (bind.E) = 143.6 keV

57Co  (E.C.)
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Other tricky peaks:

Background subtraction tricky if the Rn-concentration changes 
with time.  Advice: Flush with N2 and wait some time to start 
measurement.

222Rn-daughters

From 41Ar produced in nuclear reactors. 
1293.6 keV

40K in big massive samples
The background subtraction could be incorrect since the 
sample will shield the detector from radioactivity in the shield



50 CEA, Paris, June 12, 2018

 

0

200

400

600

800

1000

1200

1400

1600

2002 2004 2008 2009 2010 2012

Impurities
Environment
Radon
Cosmogenic activation
Muon induced

C
ar

bo
n-

ep
ox

y 
to

 A
l w

in
do

w

A
l w

in
do

w
 to

 A
l e

nd
ca

p

S
pe

ci
al

 w
ith

 H
g 

in
 M

ar
in

el
li

S
hi

el
d 

im
pr

ov
em

en
t

M
uo

n 
sh

ie
ld

Year

C
ou

nt
 r
at

e 
40

-2
70

0 
ke

V
 / 

d
-1

0

200

400

600

800

1000

1200

1400

1600

2002 2004 2008 2009 2010 2012

Impurities
Environment
Radon
Cosmogenic activation
Muon induced

C
ar

bo
n-

ep
ox

y 
to

 A
l w

in
do

w

A
l w

in
do

w
 to

 A
l e

nd
ca

p

S
pe

ci
al

 w
ith

 H
g 

in
 M

ar
in

el
li

S
hi

el
d 

im
pr

ov
em

en
t

M
uo

n 
sh

ie
ld

Year

C
ou

nt
 r
at

e 
40

-2
70

0 
ke

V
 / 

d
-1

Detector Ge-5 – Background evolution



51 CEA, Paris, June 12, 2018

Activation in germanium at 500 m w.e.
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52

QC & maintenance HPGe

• Regular QC checks (daily/weekly/when changing sample) with 
reference source 

• Log E-cal., FWHM, and possibly efficiency

• Measure background regularly and keep a log of it, both peak 
count rates as well as integrated count rate.

• Log leakage current and LN2 consumption (weekly)

• Thermal cycle once per year – or more seldom (and clean Dewar)
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53

QC & maintenance HPGe

• Keep cool at all times (to avoid diffusion and increased deadlayers)

• No H.V. unless cool – longer time to cool/heat for a big crystal

• Pump the cryostat when necessary !! (every XX year)     
can vary from one detector to another depending on how good the vacuum seal is.

• Remove ice from Dewar

• It is worth repairing an old (underground) detector!!         
– a “big bad” detector is still valuable
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Operation of HPGe

• No electrical contact between detector and shield. 
(not generally the case as we have examples were the detector work equally 
well with electrical connection)

• Certain detectors can be sensitive to pressure to the 
detctor arm or window or endcap.
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55

Coincidence techniques - Hardware

• Analogue vs. digital

Fast digitizers enable new instrumentations 
for safeguards work  => Need for standards
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(Anti-) Coincidence techniques - Hardware

• Compton suppression

• Muon veto

• Finding the needle in a haystack (small peak in high 
background)
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Thank you 
for your attention! 
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Stay in touch

•EU Science Hub: ec.europa.eu/jrc

•Twitter: @EU_ScienceHub

•Facebook: EU Science Hub - Joint Research Centre

•LinkedIn: Joint Research Centre

•YouTube: EU Science Hub


