The European Commission's science and knowledge service

Joint Research Centre

Specific cases Decay chains, branching, equilibrium, beta-plus

2

100

K:

ye.

Mikael Hult

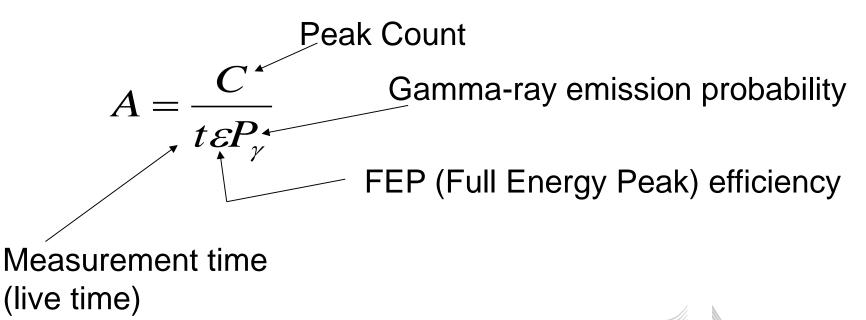
European Commission – Joint Research Centre – Directorate for Nuclear Safety and security, JRC-Geel

.

Course on gamma-ray spectrometry CEA, Paris, June 13, 2018

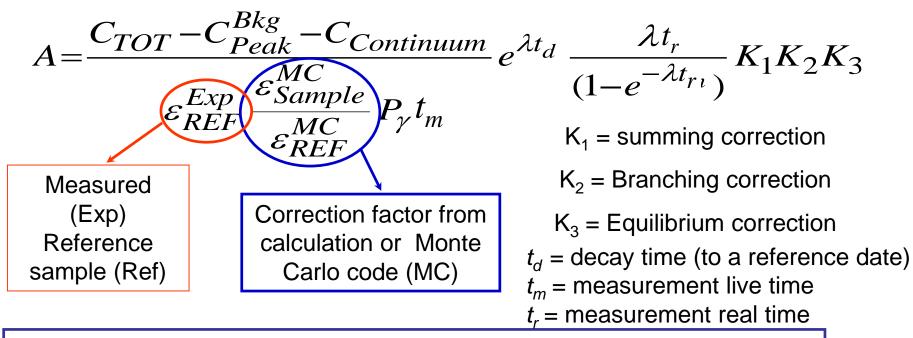
Important web-sites

DDEP – <u>Decay Data</u> Evaluation Project <u>http://www.nucleide.org</u> Also, new website at LNHB.....<u>http://www.lnhb.fr</u>


Examples of <u>gamma-ray spectra</u> (HPGe/Ge(Li) <u>and</u> NaI) <u>http://www4vip.inl.gov/gammaray/catalogs/catalogs.shtml</u>

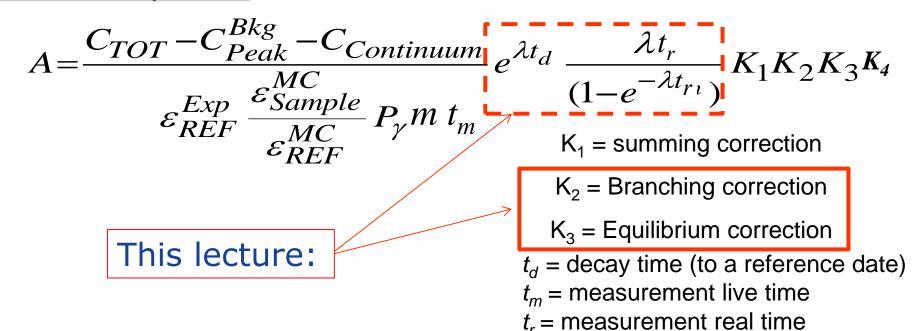
Useful tools: <u>http://www.Nucleonica.org</u>

Websites of several NMIs (National Metrology Institutes like NPL (UK), NIST (USA) LNHB (France).


The simplified Basic Equation for gamma-ray spectrometry $C = A P_{\nu} t \varepsilon$

3

The (almost) complete basic equation for gamma-ray spectrometry


Combine activities from several gamma-rays from one radionuclide

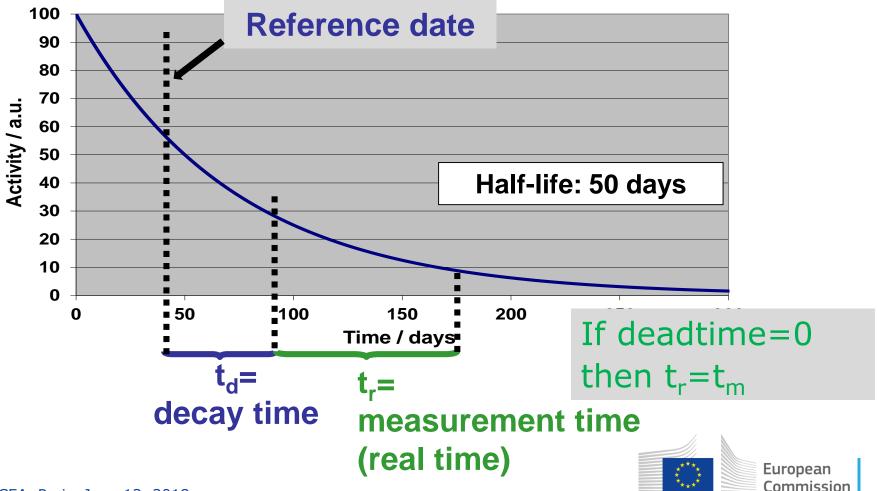
Combine activities from several daughters into one activity for the mother (like for ²²⁶Ra and the ²²²Rn-daughters)

Angular correlations

The basic equation for gamma-ray spectrometry

Is it included in "your" software? I cannot say but you should check!

 K_4 = angular correlations


Basic Equation – Time corrections

Decay during measurement

$$\frac{\lambda t_r}{(1 - e^{-\lambda t_r})}$$

Decay from reference date
$$e^{\lambda t_d}$$

Bateman's equations

Serial decay

$$A \rightarrow B \rightarrow C(stable)$$

$$\frac{dN_B}{dt} = -\lambda_B N_B + \lambda_A N_{A0} e^{-\lambda_A t}$$

N, being number of atoms

The radioactive decay

- Discovered by Henri Becquerel (1896)
- Decay law formulated by Ernest Rutherford in 1905
- The general analytical solution to Rutherford's law was derived by Harry Bateman in 1910 (while at Cambridge)
- Mathematician
- Manchester Cambridge Göttingen <u>PARIS</u> Liverpool – Manchester – USA (CalTech.)

(1882 - 1946)

But don't forget the Swedes HULTQVIST B., 1956, Studies on Naturally Occurring Ionizing Radiations (Stockholm: Almqvist & Wiksells Boktryckeri AB).

¹⁰ CEA, Paris, June 13, 2018

Harry Bateman

Useful site: Nucleonica

https://www.nucleonica.com/ wiki/index.php?title=Help%3 ADecay_Engine%2B%2B

¹¹ CEA, Paris, June 13, 2018

Mr Bateman, Solution of a system of differential equations, etc. 423

The solution of a system of differential equations occurring in the theory of radio-active transformations. By H. BATEMAN, M.A., Trinity College.

[Read 21 February 1910.]

 It has been shown by Prof. Rutherford * that the amounts of the primary substance and the different products in a given quantity of radio-active matter vary according to the system of differential equations,

 $\frac{dP}{dt} = -\lambda_t P$ $\frac{dQ}{dt} = \lambda_1 P - \lambda_2 Q$ $\frac{dR}{dt} = \lambda_{9}Q - \lambda_{9}R$ (1). $\frac{dS}{dt} = \lambda_s R - \lambda_s T$

where P, Q, R, S, T, \dots denote the number of atoms of the primary substance and successive products which are present at time t.

Prof. Rutherford has worked out the various cases in which there are only two products in addition to the primury substance, and it looks at first sight as if the results may be extended to any number of products without much labour.

Unfortunately the straightforward method is unsymmetrical and laborious, and as the results of the calculations are needed in some of the researches which are being carried on in radio-activity the author has thought it worth while to publish a simple and symmetrical method of obtaining the required formulae.

2. Let us introduce a set of auxiliary quantities p(x), q(x), r(x), ... depending on a variable x and connected with the quantities P(t), Q(t), R(t), ... by the equations,

 $p(x) = \int_0^\infty e^{-xt} P(t) dt, \quad q(x) = \int_0^\infty e^{-xt} Q(t) dt, \dots (2).$

It is easily seen that

$$\int_{a}^{a} e^{-at} \frac{dP}{dt} dt = -P(0) + x \int_{a}^{a} e^{-at} P(t) dt \dots \dots (3)$$
$$= -P_{a} + xp,$$
* Redenements and existing a statistic

Chain of "D" decays

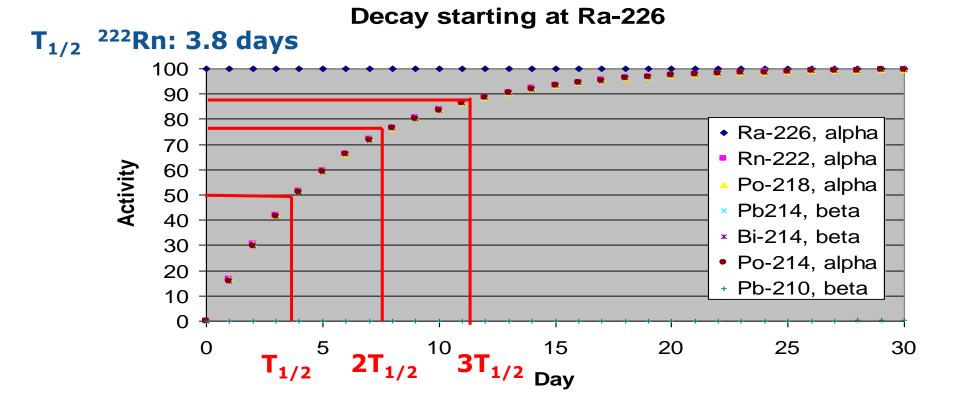
$$A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow \dots A_{D-1} \rightarrow D(stable)$$

Recursive problem:
$$\frac{dN_{j}}{dt} = -\lambda_{j}N_{j} + \lambda_{j-1}N_{(j-1)0}e^{-\lambda_{j-1}t}$$

General solution: "Bateman's equations"

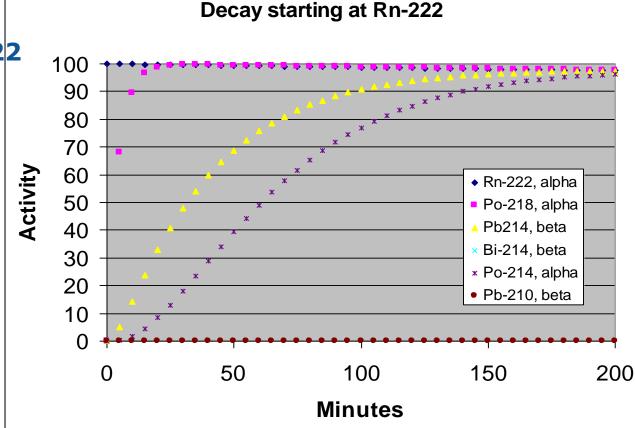
$$\frac{dN_D}{dt} = N_0 \sum_{i=1}^D c_i e^{-\lambda_i t}$$

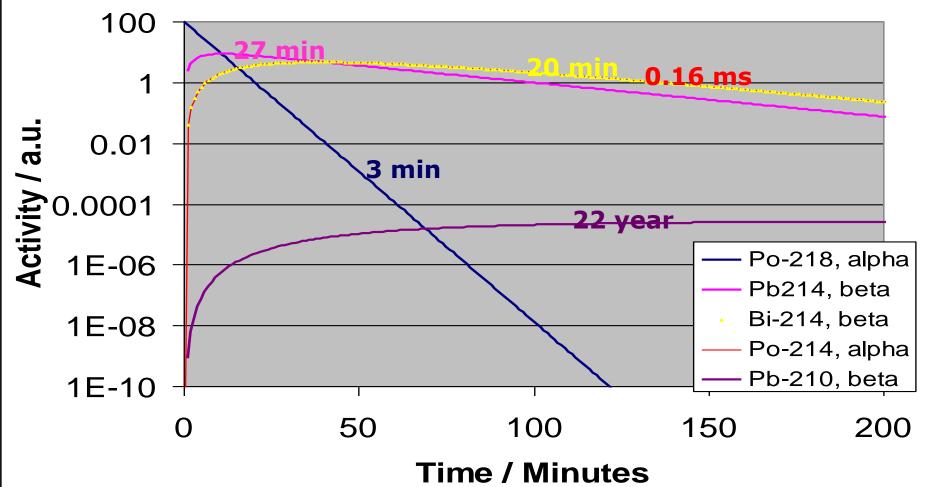
$$c_{i} = \frac{\prod_{j=1}^{D} \lambda_{j}}{\prod_{j=1, i \neq j}^{D} (\lambda_{j} - \lambda_{i})}$$



12 CEA, Paris, June 13, 2018

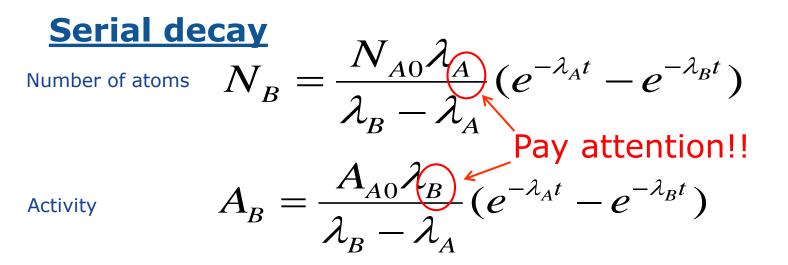
Excel sheet to be distributed


1	А	В	С	D	E	F	G	Н		J	К	L	М	N	0	Р	Q	R	
1	Input section																		
2		Isotope	Ra-226	Rn-222	Po-218	Pb214	Bi-214	Po-214	Pb-210										
3		T _{1/2} table	1600 a	3.82 d	3.07 m	26.8 m	19.9 m	0.00016 s	22.26 a										
4		T _{1/2} /s	5.04576E+10	330048	184.2	1.608E+03	1.194E+03	0.00016	7.0199E+08					3333					
5		λ (=ln(2)/T _{1/2)}	1.37372E-11		3.76301E-03	4.31062E-04	5.80525E-04	4.33217E+03									•	Ra-220, alpha	- 7
6													Decay	start	ting at	Ra-22		Rn-222.	- 1
7	Bateman's equarion	is for the dec	cay of Ra-226										Deccuy	Jun	ing a			alpha	- 1
8		B1		1.000006541	1.000006545	1.000006577	1.0000066	1.0000066	1.014115482									Po-218,	
9		B2		-1.000006541	-1.000564957	-1.005463594	-1.009114222	-1.009114223	0.000474668									alpha	- 1
10		B3			0.000558412	-7.2243E-05	1.3178E-05	1.3178E-05	-3.45787E-12	120							×	Pb214, beta	.
11		B4				0.005529261	0.021475969	0.021475971	-4.91935E-08	120			My cho				L	Bi-214,	
12		B5					-0.012381525	-0.012381527	2.10595E-08				time	e					
13		B6						-4.18994E-23		100	+++	****	* * * *	• • • •	• • • <u>•</u>	* * * * *			•
14		B7							-1.014590122				- i			****			
15													- L.						
16 17	Start Activity /Bq	100		0	0	0	0	0	0	80			- * 1						1 1
	Time /s	Time /dave	Pa_226_alpha	Dn 222 alnha	Do 218 alpha	Ph214 heta	Bi-214 beta	Po.214 alpha	Ph_210 heta	£		_	* I						
18				Rn-222, alpha					Pb-210, beta	E E			•						
18 19	Time /s 864000	Time /days 10					Bi-214, beta 83.55940212			09 01 01 01			*						
18 19 20										Activity 09		•	•						
18 19 20 21	864000			83.70777477	83.69867765					40 40		•	•						-
18 19 20 21 22	864000	10	99.99881311	83.70777477	83.69867765	83.61887427			0.045584737		-	•••	* 						-
18 19 20 21 22 23	864000 0 86400	10	99.99881311	83.70777477 0 1.65942E+01	83.69867765	83.61887427	83.55940212	83.55940211	0.045584737	40			* 						-
18 19 20 21 22 23 24 25	864000 0 86400 172800 259200	10 0 1	99.99881311 100 99.99988131	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01	83.69867765 0 1.65476E+01	83.61887427 0 1.61390E+01	83.55940212 0 1.58345E+01	83.55940211 0 15.83454605 29.80108739 41.44997548	0.045584737 0 0.00066097 0.002625467			•							-
18 19 20 21 22 23 24 25 26	864000 0 86400 172800 259200 345600	10 0 1 2	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.16066E+01	0 1.65476E+01 3.03958E+01 4.19460E+01 5.15795E+01	0 1.61390E+01 3.00550E+01 4.16618E+01 5.13425E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.11658E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879	40	*	•	* 						-
18 19 20 21 22 23 24 25 26 27	864000 0 86400 172800 259200 345600 432000	10 0 1 2 3 4 5	99.99881311 100 99.99988131 99.99976262 99.99976262 99.99964393 99.99952524 99.999540655	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.16066E+01 5.96370E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.15795E+01 5.96144E+01	0 1.61390E+01 3.00550E+01 4.16618E+01 5.13425E+01 5.94167E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.11658E+01 5.92694E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001	40		•							-
18 19 20 21 22 23 24 25 26 27 28	864000 0 86400 172800 259200 345600 432000 518400	10 0 1 2 3 4	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524 99.99940655 99.99928787	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.16066E+01 5.96370E+01 6.63348E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.96144E+01 6.63160E+01	83.61887427 0 1.61390E+01 3.00550E+01 4.16618E+01 5.94167E+01 6.61511E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.92694E+01 6.60282E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398 66.02816464	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923	40	*	•		+-+-+-	+++++	+-+-+-	+-+-+-+		-
18 19 20 21 22 23 24 25 26 27 28 29	864000 0 86400 172800 259200 345600 432000 518400 604800	10 0 1 2 3 4 5 6 7	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524 99.99940655 99.99928787 99.99916918	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.16066E+01 5.96370E+01 6.63348E+01 7.19211E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.15795E+01 5.96144E+01 6.63160E+01 7.19054E+01	83.61887427 0 1.61390E+01 3.00550E+01 4.16618E+01 5.13425E+01 5.94167E+01 6.61511E+01 7.17679E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.92694E+01 6.60282E+01 7.16654E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398 66.02816464 71.66538613	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923 0.025592682	40	*	* * 	• 	++++++	+-+-+- 15	20	25		-
18 19 20 21 22 23 24 25 26 27 28 29 30	864000 0 86400 172800 259200 345600 432000 518400 604800 691200	10 0 1 2 3 4 5 6 6 7 8	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524 99.999952524 99.99928787 99.99928787 99.999261618	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.16066E+01 5.96370E+01 6.63348E+01 7.19211E+01 7.65804E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.15795E+01 5.96144E+01 6.63160E+01 7.19054E+01 7.65673E+01	83.61887427 0 1.61390E-01 3.00550E-01 4.16618E+01 5.13425E-01 5.94167E+01 6.61511E+01 7.17679E-01 7.64526E+01	83.55940212 0 1.58345E-01 2.98011E-01 4.14500E+01 5.92694E+01 5.92694E+01 7.16654E+01 7.6654E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398 66.02816464 71.66538613 76.36713703	0.045584737 0 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923 0.025592682 0.03191073	40	* * 0	* * 	• 	+-+-+-	 15	20	25		-
18 19 20 21 22 23 24 25 26 27 28 29 30 31	864000 0 86400 172800 259200 345600 432000 518400 604800 604800 691200 777600	10 0 1 2 3 4 5 5 6 6 7 7 8 9	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524 99.99940655 99.99926787 99.99916918 99.99916918 99.99905049 99.9989318	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.16066E+01 5.96370E+01 6.63348E+01 7.19211E+01 7.65804E+01 8.04665E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.15795E+01 5.96144E+01 7.19054E+01 7.65673E+01 8.04556E+01	83.61887427 0 1.61390E+01 3.00550E+01 4.16618E+01 5.13425E+01 5.94167E+01 6.61511E+01 7.17679E+01 7.64526E+01 8.03600E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.92694E+01 6.60282E+01 7.16654E+01 7.663671E+01 8.02887E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398 66.02816484 71.66538613 76.36713703 80.28865104	0.045584737 0 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923 0.025592682 0.03191073 0.038595049	40	* * 0	* * +	• 			20			-
18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32	864000 0 86400 172800 259200 345600 432000 518400 604800 691200 777600 864000	10 0 1 2 3 4 5 5 6 7 8 9 9 10	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524 99.99940655 99.99928787 99.99916918 99.99916918 99.99989318 99.99881311	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.96370E+01 6.63348E+01 7.19211E+01 7.65804E+01 8.04665E+01 8.37078E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.96144E+01 6.63160E+01 7.19054E+01 7.65673E+01 8.04556E+01 8.36987E+01	83.61887427 0 1.61390E+01 3.00550E+01 4.16618E+01 5.94167E+01 6.61511E+01 7.17679E+01 8.03600E+01 8.36189E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.92694E+01 6.60282E+01 7.16654E+01 7.16654E+01 8.02287E+01 8.35594E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398 66.02816464 71.66538613 76.36713703 80.28865104 83.55940211	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923 0.025592682 0.03191073 0.038595049 0.045584737	40	* * 0	•	* 		 15 Day	 20	25		30
18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 33	864000 0 86400 172800 259200 345600 432000 518400 604800 691200 777600 864000 950400	10 0 1 2 3 4 5 5 6 7 7 8 9 10 11	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99952524 99.99940655 99.99940655 99.99940655 99.99928787 99.99916918 99.99926787 99.999269318 99.99869318	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.96370E+01 6.63348E+01 7.19211E+01 7.65804E+01 8.04665E+01 8.37078E+01 8.64111E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.96144E+01 6.63160E+01 7.19054E+01 7.65673E+01 8.04556E+01 8.64035E+01	83.61887427 0 1.61390E+01 3.00550E+01 4.16618E+01 5.94167E+01 6.61511E+01 7.17679E+01 7.64526E+01 8.03600E+01 8.63370E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.92684E+01 7.16654E+01 7.63671E+01 8.02887E+01 8.62874E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.165805398 66.02816464 71.66538613 76.36713703 80.28865104 83.55940211 86.28737904	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923 0.025592682 0.03191073 0.038595049 0.045584737 0.052828998	40	* * 0	* * 	* 10			 20	<u> </u> 25		+
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	864000 0 86400 172800 259200 345600 432000 518400 604800 604800 691200 777600 864000 950400	10 0 1 2 3 4 5 6 7 8 9 10 11 12 11 12 10 11 12 10 10 11 12 10 10 10 10 10 10 10 10 10 10	99.99881311 100 99.99988131 99.99976262 99.99964393 99.99964393 99.99940655 99.99940655 99.99940655 99.99940655 99.99940618 99.99940618 99.99950549 99.99851311 99.99869442 99.99857574	83.70777477 0 1.65942E+01 3.04347E+01 4.19784E+01 5.96370E+01 6.63348E+01 7.19211E+01 7.65804E+01 8.04665E+01 8.37078E+01 8.64111E+01	83.69867765 0 1.65476E+01 3.03958E+01 4.19460E+01 5.96144E+01 6.63160E+01 7.19054E+01 7.65673E+01 8.04556E+01 8.64035E+01 8.86595E+01	83.61887427 0 1.61390E+01 3.00550E+01 4.16618E+01 5.94167E+01 6.61511E+01 7.17679E+01 7.64526E+01 8.03600E+01 8.63370E+01 8.86040E+01	83.55940212 0 1.58345E+01 2.98011E+01 4.14500E+01 5.92694E+01 6.60282E+01 7.16654E+01 7.16654E+01 8.02287E+01 8.35594E+01	83.55940211 0 15.83454605 29.80108739 41.44997548 51.16580597 59.26935398 66.02816464 71.66538613 76.36713703 80.28865104 83.55940211	0.045584737 0.00066097 0.002625467 0.005679405 0.009641879 0.014362001 0.019713923 0.025592682 0.03191073 0.038595049 0.045584737	40 20 0	* · · · · · · · 0	* * 	* 10			20	25	3	30



15 CEA, Paris, June 13, 2018

Decay starting at Po-218



Exercise: Implement the following decay series in the excel file:

$$^{232}\text{Th} \xrightarrow{14\cdot10^{10}}{}^{y}2^{28}\text{Ra} \xrightarrow{5.8 y} {}^{228}\text{Ac} \xrightarrow{6.1 h} {}^{228}\text{Th} \xrightarrow{1.9 y} {}^{224}\text{Ra} \dots$$

17 CEA, Paris, June 13, 2018

More complex if N_{0B} or A_{0B} are not negligible, but in principle add the term $N_{0B}e^{-\lambda_B t}$ or $A_{0B}e^{-\lambda_B t}$

Equilibrium

<u>3 cases</u>

- Secular equilibrium
- Transient equilibrium
- No equilibrium

Secular equilibrium

- Mother half-life >> daughter (at least a factor 1000 bigger \Rightarrow 1 permille effect on apparent half-life)
- The apparent half-life of the daughter = the half-life of the mother
- Total activity is doubled

=> Use correct half-life when calculating activity!!!

Transient equilibrium

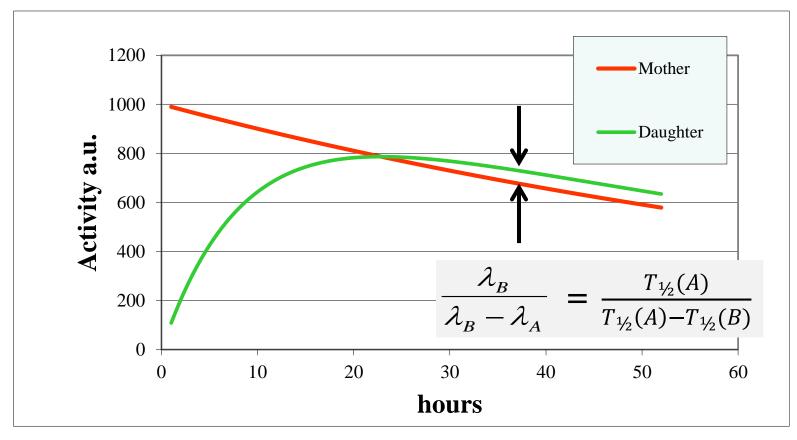
- Mother half-life > daughter half-life (ratio between 1 and 1000 or so)
- The apparent half-life of the daughter = the half-life of the mother
- *Total activity is NOT EXACTLY doubled. Equilibrium factor:*

$$\frac{\lambda_B}{\lambda_B - \lambda_A} = \frac{T_{\frac{1}{2}(A)}}{T_{\frac{1}{2}(A) - T_{\frac{1}{2}(B)}}}$$

Exercise: Equilibrium factor

Derive the expression of the equilibrium factor. Start by taking the ratio of the activity of the daughter divided by the activity of the parent.

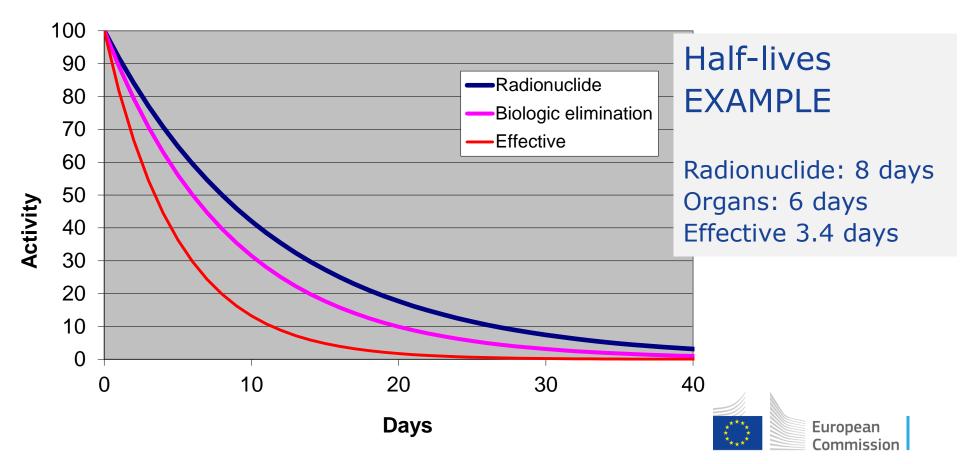
Common case of ~secular equilibrium

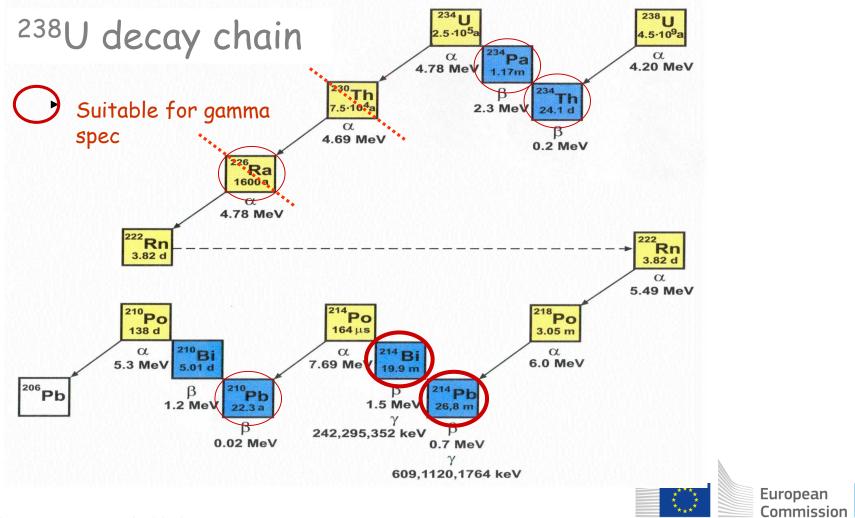

90Sr 28.8 years 90γ 2.7 days 90Zr (stable) Factor 3900 ⇒ Equilibrium factor: 1.00026

FYI: "Full" chain:

90
Kr $\xrightarrow{33 \text{ s}}$ 90 Rb $\xrightarrow{2.7 \text{ min}}$ 90 Sr $\xrightarrow{28.8 \text{ years}}$ 90 Y $\xrightarrow{2.7 \text{ days}}$ 90 Zr

²³ CEA, Paris, June 13, 2018




No equilibrium

• Mother half-life < daughter half-life

$\lambda_{effective} = \lambda_{radioactive} + \lambda_{biological}$

Ra-226 activity from daughters

Assuming

- No possibility to use 186 keV line due to interference from U-235
- Equilibrium between Ra-226 and Rn-222+daughters
- All radionuclides homogeneously distributed in the sample (how to know this?)
- Air-filters (pelletized or not) need to be placed in <u>radon-tight</u> container for ~2 weeks)

<u>Then...</u>

- All gamma-rays from Pb-214 and Bi-214 should give the same activity. 295, 352, 609, 1120, 1764
 - => calculate a weighted mean (if all agree)
- Use possible discrepancies to discover problems with efficiency calibration or re-distribution of radionuclides (radon) in the sample.

U-235 after obtaining Ra-226 activity

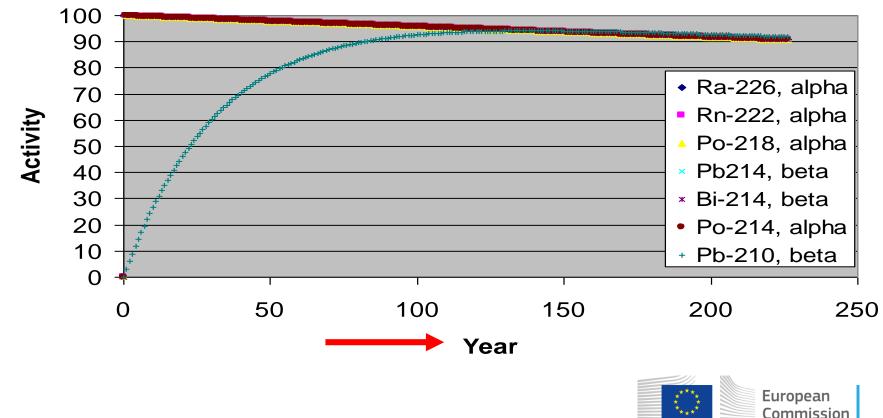
<u>Assuming</u>


• No possibility to use 144 keV, 163 keV or 205 keV (or any other line)

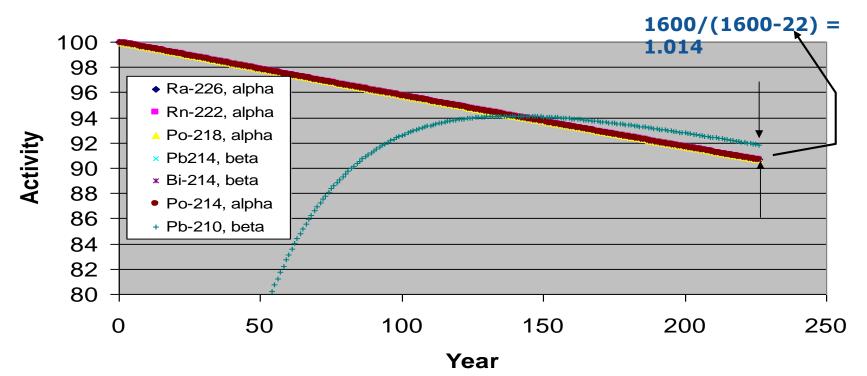
<u>Then...</u>

- Knowing he Ra-226 activity, Calculate the number of counts that Ra-226 will generate in the 186 keV peak
- Subtract these counts from the total counts in the 186 keV peak in the spectrum
- Quantify U-235 using the remaining counts in the 186 keV peak.

Secular or transient?



³⁰ CEA, Paris, June 13, 2018


What about Pb-210? In equilibrium with Ra-226?

Decay starting at Ra-226

³¹ CEA, Paris, June 13, 2018

Decay starting at Ra-226

³² CEA, Paris, June 13, 2018

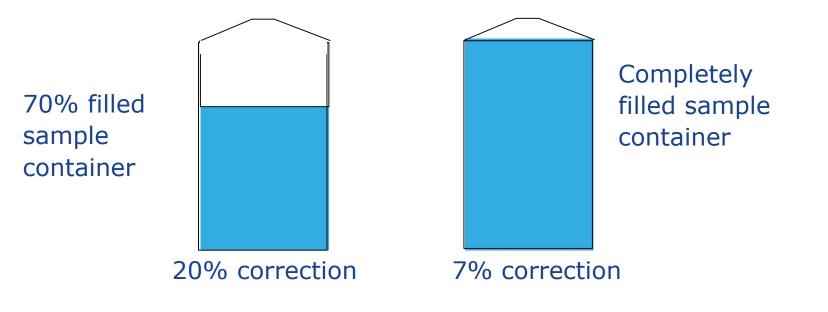
Quantification of Ra-226 using the Rn-222 daughters

Applied Radiation and Isotopes

Volume 70, Issue 9, September 2012, Pages 2119-2123

Correction for radon distribution in solid/liquid and air phases in gamma-ray spectrometry

P. Carconi, F. Cardellini, M.L. Cozzella, P. De Felice 🖄 🖾, A. Fazio


Show more

https://doi.org/10.1016/j.apradiso.2012.02.080

Get rights and content

Effect of radon re-distribution on efficiency

³⁴ CEA, Paris, June 13, 2018

Radon measurement using gamma-spec.

General rule: Fill the container completely (especially important when measuring e.g. radon in water (submerse container completely in "basin")

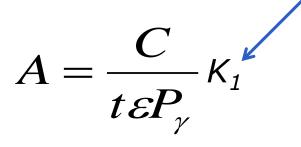
Test the sample container for leakage. How?

Use of adsorbants?

Most of all: Be aware of the problem of radon and thoron redistribution

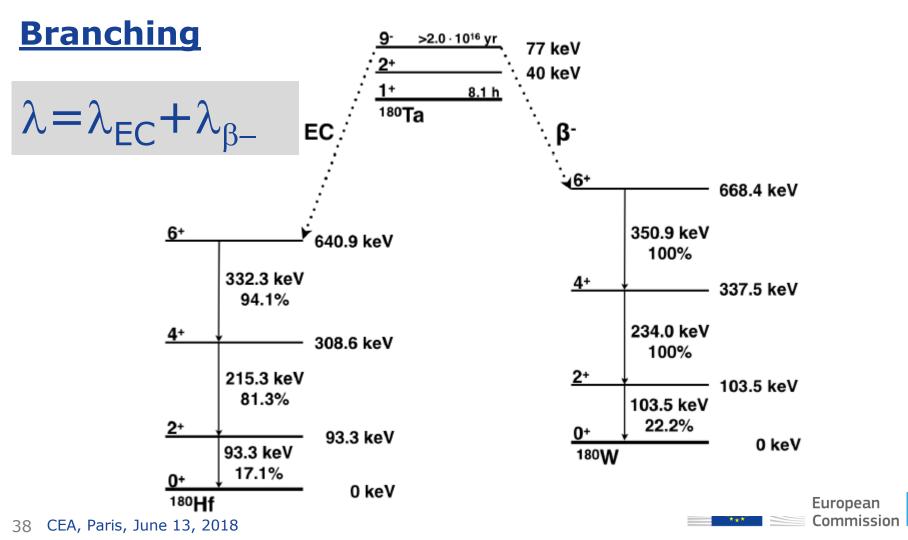
The simplified Basic Equation for gamma-ray spectrometry

 $A = \frac{C}{t \varepsilon P_{\gamma}}$


Still highly useful for: ⁴⁰K and other long-lived radionuclides without cascading gamma-rays

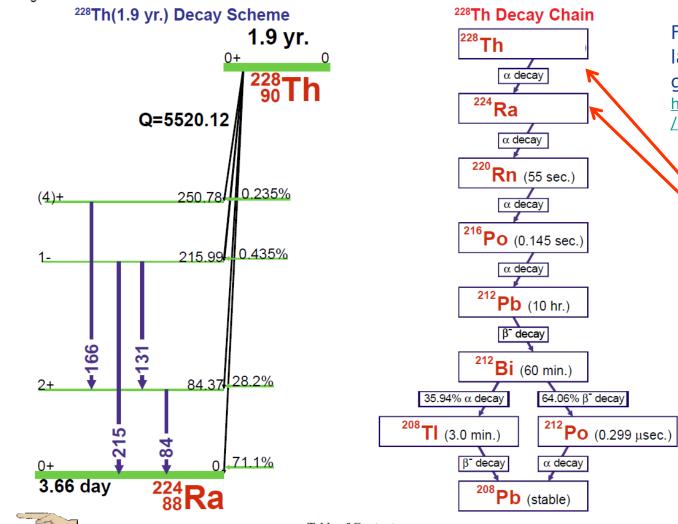
and for: ¹³⁷Cs unless the reference date is years from the measurement date

³⁶ CEA, Paris, June 13, 2018


The simplified Basic Equation for gamma-ray spectrometry – <u>with summing-correction</u>

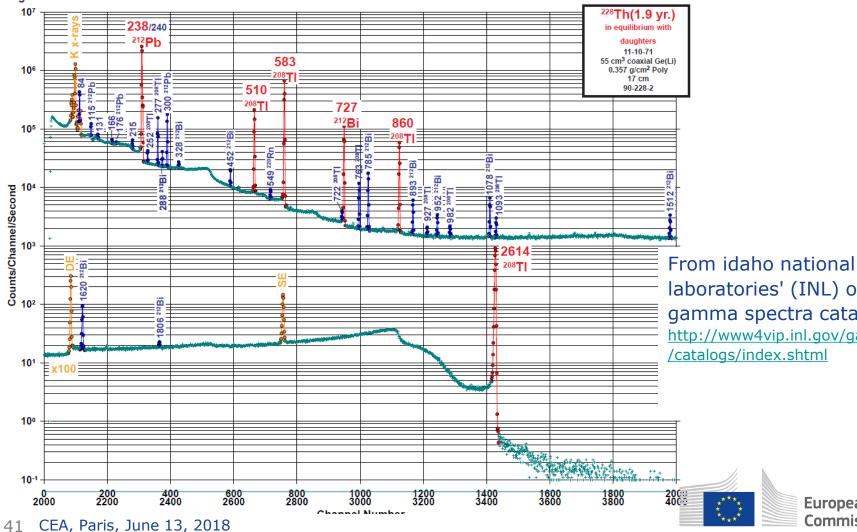
highly useful for : ¹³⁴Cs, ¹⁵²Eu, ⁶⁰Co, ... etc. unless the reference date is years from the measurement date

³⁷ CEA, Paris, June 13, 2018


Branching

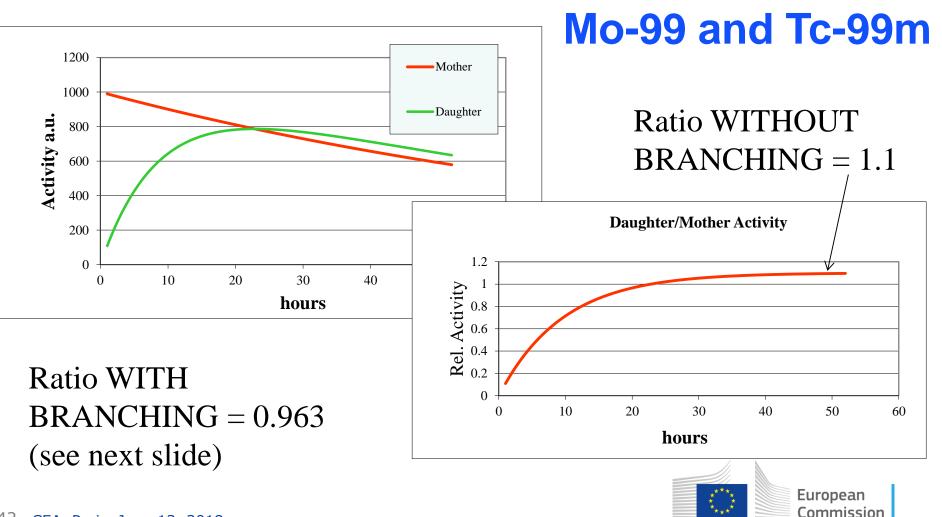
One example: TI-208, in equilibrium with ²²⁸Th <u>http://www4vip.inl.gov/gammaray/catalogs/ge/pdf/th228.pdf</u>

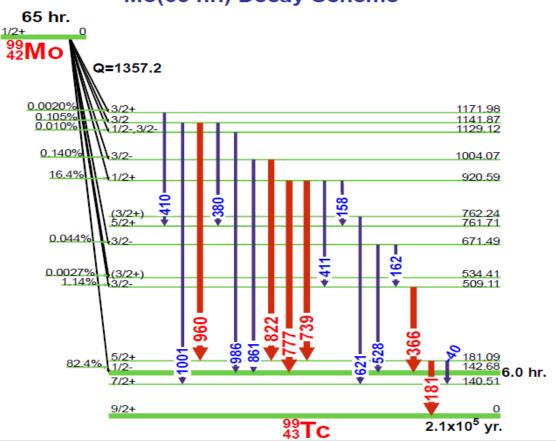
To calculate activity of ²²⁸Th using the 2614 keV and 583 keV lines from ²⁰⁸Tl, it is necessary to correct for the 36% branching ratio.

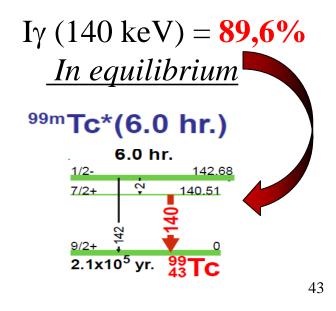


From Idaho national laboratories' (INL) online gamma spectra catalog http://www4vip.inl.gov/gammaray /catalogs/index.shtml

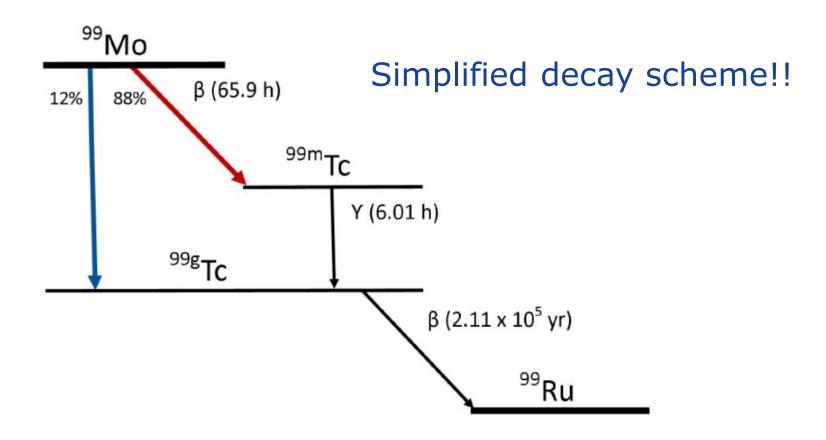
> European Commission

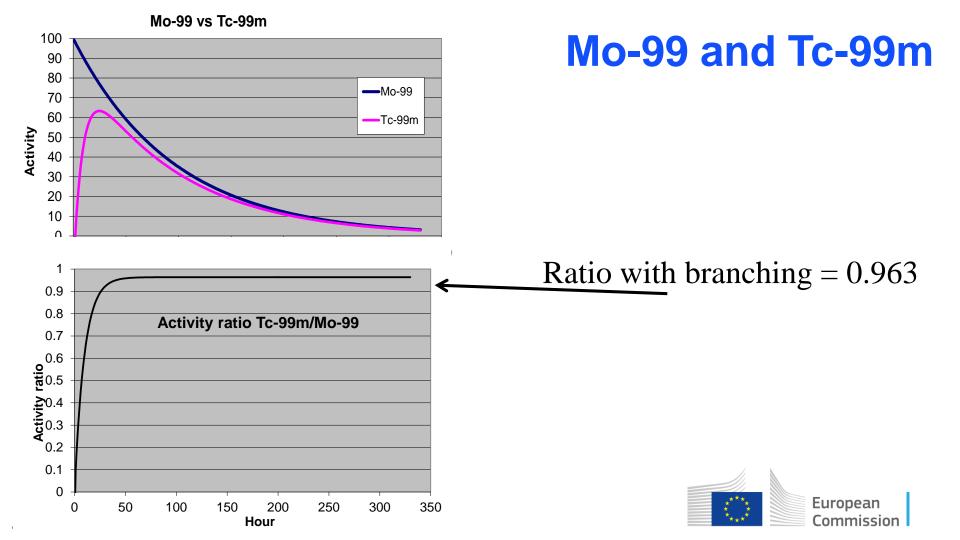

EA


Table of Contents


laboratories' (INL) online gamma spectra catalog http://www4vip.inl.gov/gammaray /catalogs/index.shtml

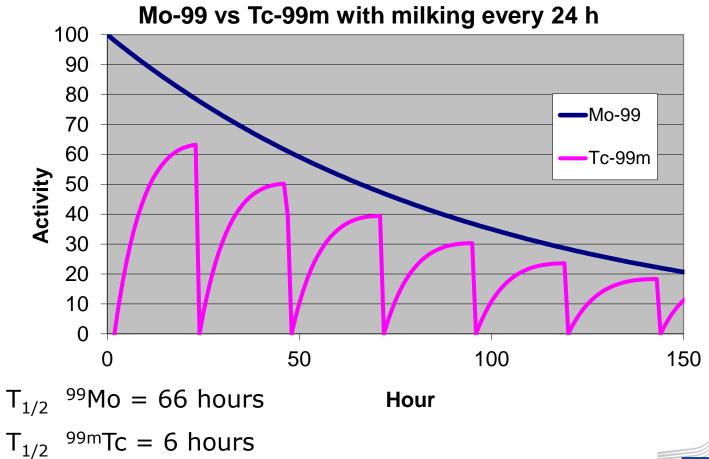
> European Commission




⁹⁹Mo(65 hr.) Decay Scheme

Extract from DDEP page on Mo-99

1 Decay Scheme


Mo-99 disintegrates to the Tc-99 excited levels by beta minus emissions. The 142 keV excited level (Tc-99m) has a half-life of 6,0067 h. At the equilibrium (t>60 h), the Tc-99m activity in relation to those of Mn-99 is:

Le molybdène 99 se désintègre par émission bêta moins vers les niveaux excités de technétium 99. Une proportion p = 87,6 (19)% de désintégrations conduit au niveau excité de 142 keV (Tc-99m) de 6,0067 heures de période. Ce niveau excité est alimenté directement par émission bêta moins (82,1 (15)) % et aussi par des transitions gamma.

A l'équilibre (t>60 heures) l'activité de Tc-99m par rapport à celle de Mo-99 s'écrit :

 $\begin{array}{l} \underline{A(\text{Tc-99m}) \ / \ A(\text{Mo-99}) = p} \times \ T_{1/2}(\text{Mo-99}) \ / \ [\ T_{1/2}(\text{Mo-99}) \ - \ T_{1/2}(\text{Tc-99m})] = 0,963(21) \\ T_{1/2}(\text{Mo-99}) \ / \ [T_{1/2}(\text{Mo-99}) \ - \ T_{1/2}(\text{Tc-99m})] = 1,1005 \ (8) \\ \hline \text{with } p = 0,876(19) \\ \hline \text{For this evaluation Mo-99 and Tc-99m are considered in equilibrium} \\ Pour \ cette \ \acute{evaluation} \ Mo-99 \ et \ Tc-99m \ sont \ considérés \ \grave{a} \ l'\acute{equilibre}. \end{array}$

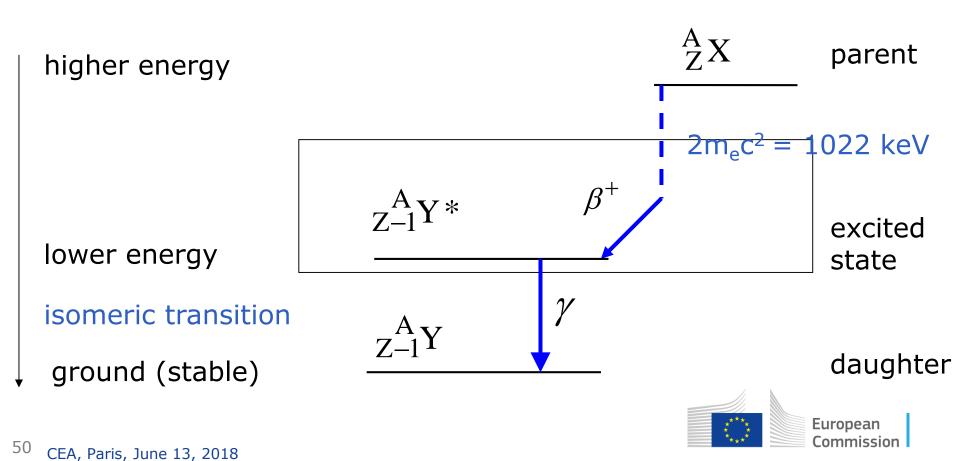
Beta plus decay

Positron emission

⁴⁸ CEA, Paris, June 13, 2018

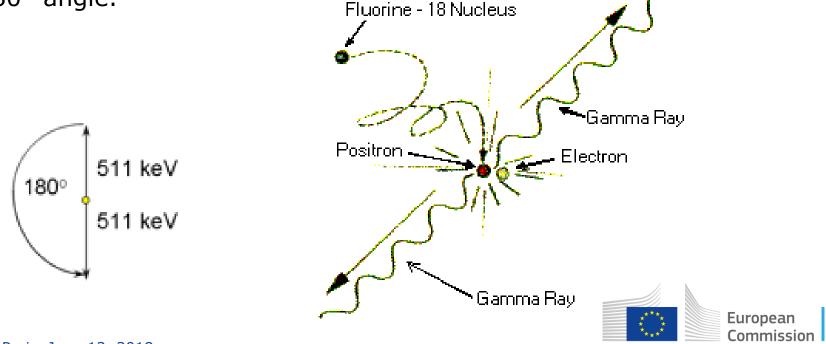
Beta plus decay

Isobaric transition in which a <u>proton</u> is transformed into a <u>neutron</u> and a <u>positron</u> (+neutrino) is emitted from the nucleus


$^{A}_{Z}X \rightarrow ^{A}_{Z-1}Y + e^{+} + \nu_{e}$ +energy

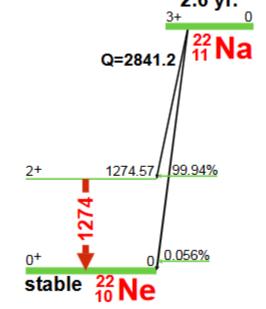
in proton rich nuclei

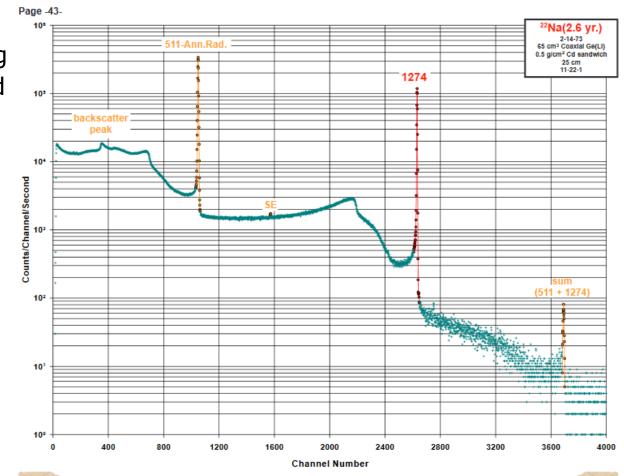
⁴⁹ CEA, Paris, June 13, 2018


Energy diagram

Fate of positrons

Positrons (anti-electrons) have a short lifetime in matter. They readily <u>annihilate with electrons</u>.

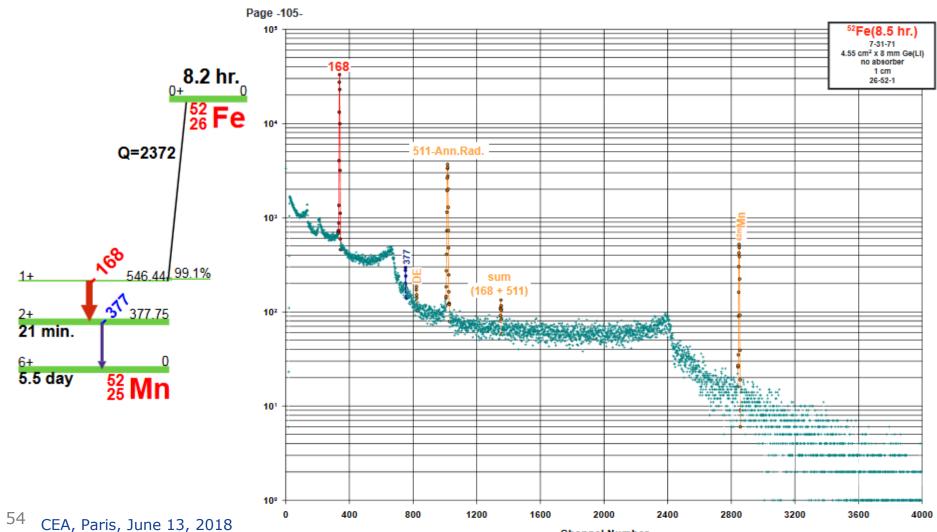

The <u>annihilation radiation</u> are two photons of 511keV ($=m_e$) emitted at 180° angle.



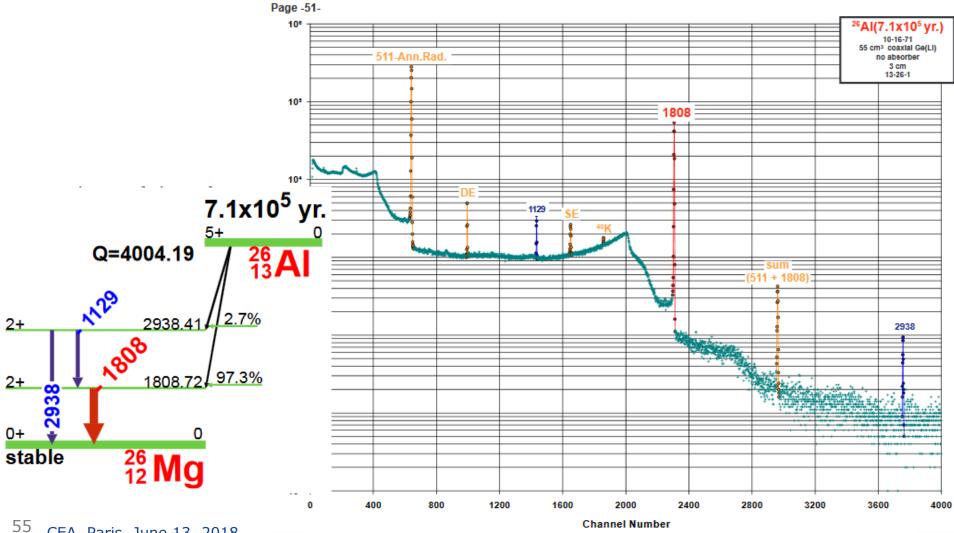
⁵¹ CEA, Paris, June 13, 2018

Beta-plus

http://www4vip.inl.gov/g ammaray/catalogs/ge/pd f/na22.pdf 2.6 yr.


The 511 keV peak will appear in the spectrum and will also create coincidence summing!!

It is generally produced in the sample.


Extremely thin samples can be difficult to quantify

The 511 keV is not usually used for quantification. But, if the sample is very "radiopure" it is possible.

. ~ •

Q-values only "slightly" above 1022 keV will have very low probability for beta plus decay.

- Sr-85 (1065 keV)

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub

