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Monte Carlo simulation of the experiment: 

=> Computer sampling of random numbers r, uniformly distributed in the 

range (0,1) 

=> Establish a correspondence r  dice side J 

   0  r < 1/6   J=1 

 1/6  r < 2/6   J=2 

 2/6  r < 3/6   J=3 

 and so on 

=> N random numbers r1, r2, ... rN  the set J1, J2 ... JN 

The statistical properties of the sets I1, I2, .. IN and J1, J2 .. JN are identical 

 

=> Any estimate computed using J1, J2 ..JN is statistically equal to the same  

estimate computed using I1, I2, .. IN 

1. Introduction 

            PRINCIPLES OF THE MONTE CARLO METHOD 

       Monte Carlo method – a mathematical simulation method using random numbers 

 Example: Dice rolling: 

 

Real world experiment: 

=> N trials with results I1, I2, .. IN ;   Ik=1 or 2... or 6 
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Monte Carlo simulation is usually applied for solving problems including a random component 

 

Deterministic problems can also be solved 

- by solving a suitable random model corresponding to the deterministic problem; 

- using Monte Carlo as a mathematical method without reference to a random model (e.g. 

computation of multidimensional integrals) 

 

Example: calculation of the area of an ellipse with major axis =2a and minor axis =2b 

- Associate a random model for evaluation of an area A – generate N random uniformly distributed 

points in a rectangle (area R) encompassing the area of interest; the ratio between the number of 

points Ni inside the area A to the total number of points is an estimate of the ratio A/R 

 

- Cases: a1=a2=a3=1, b1=1; b2=0.5; b3=0.10. 

Simple calculation in EXCEL with RAND() function, 3 trials 

1 

2 

3 

First trial Second trial Third trial 
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Ellipse a=1, b=1 a=1, b=0.5 a=1, b=0.10 

Exact area 3.1416 1.5708 0.3142 

N 50 500 10000 50 500 10000 50 500 10000 

A (1st trial) 2.96 3.184 3.1368 1.36 1.68 1.5716 0.24 0.28 0.3044 

A (2nd trial) 3.20 3.176 3.1436 1.84 1.376 1.5720 0.08 0.312 0.3200 

A (3rd trial) 3.04 3.208 3.1464 1.44 1.608 1.5680 0.4 0.272 0.3136 

 The variance of the estimate of the area decreases when N increases 

 

 The variance is higher if the probability of a point in the region of interest decreases 

 

Note: 

- In the case of a=b=1, the results can be used for the computation of . 

- For a circle of radius 1, area equals  

 The results for a=1, b=1 from the Table are also estimates of  
 

Area A of the ellipse estimated by Monte Carlo simulation  

N points uniformly sampled in a square with length=1 

Results for N=50, N=500 and N=10000: 
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Monte Carlo simulation: 

• Procedure for sampling random numbers; 

• Procedure for establishing a correspondence between the random numbers and the 

values of the variable of interest; 

- The probability distribution of the variable is required – Data base, specific to the 

problem 

• Procedure for the evaluation of the results. 
 

Monte Carlo results have an intrinsic statistical disperison: 

 relative uncertainty ~ 1/(N1/2)  

 better results for large N, but this implies longer computing time 

  

 methods to reduce the computing time 

- Technical solution: Improve the algoritm for simulation of events 

 Simple example: faster simulation of the dice experiment:  

 Instead of:    Apply directly: 

     0  r < 1/6  => J=1 J=IntegerPart(6 r)+1 

  1/6  r < 2/6  => J=2 

  2/6  r < 3/6  => J=3 

  and so on 

 => no comparison required 

 => much faster if the random variable takes a large number of values 

- More complex solutions: variance reduction techniques 
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Analog (imitative) vs non-analog (non-imitative) simulation: 

- Analog simulation: the probabilities applied in the model simulation are exactly the 

same as in the physical experiment 

  

 => every feature of the physical experiment can be analyzed using the simulation 

 

  => long computing time 

 

 

-Non-analog simulation: distorted probabilities applied in the model simulation to 

increase the occurrence of events of interest 

 

  => probability distortion accounted for in the analysis by using weights 

  

 => smaller variance of the results in a shorter computing time – variance reduction 

 

  => most important in the simulation of low probability events 
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Analog simulation: 

 

shot isotropically N0 particles from S (random directions); count the particles (N1) which hit A 

 

f = N1/N0 = A/4 => A = 4N1/N0  

  

Non-analog simulation: 

 

shot isotropically N0 particles restricted to solid angle ; count the particles (N1) which hit A 

 

N1/N0=A/  =>  A =  N1/N0 = (/4) 4N1/N0 

 

-  is known [can be computed analytically = 2(1cos(max)]; /4 = weight factor for 

each particle hitting A 

 

- Benefits vs costs – simulation focused on useful events; no information about particles 

emitted in the real experiment outside . 

 
 
 
 
 
 
 

A S  

Example: Evaluation of the solid angle A subtended by area A as seen from point S 
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For the same value of N0 the uncertainty in the non-analog simulation is smaller 

 

Particles emitted outside  are not included in the simulation – more efficient 

simulation, no time spent in sampling trajectories of no interest  

 

The distortion in the probability distribution used in the simulation is compensated by 

assigning the weight factor (/4) to each counted particle. 
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2. Sampling of random variables 
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(b): q4=5/25 

j4=2 

(c): q1=20/25 

j1=3 

(d): q2=22/25 

j2=3 

k = IntegerPart(4r)+1; If r<qk => x=xk; otherwise, x=xjk 
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Continuous random variables 

r 

x 

F(x) 
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b. The composition method 

Useful if the probability density function p(x) can be written as 

p(x) = a1p1(x) + a2  p2(x) + … + an  pn(x), with  

p1(x), p2(x), … pn(x) probability density functions for the variable x that can be 

conveniently sampled e.g. by the method of the inverse function 

a1, a2, … an >0; then clearly their sum equals 1 

Procedure: using a1, a2, … an as probabilities of a discrete variable, one of the terms 1, 

2, … n is selected, say k; after that, x is sampled from the pdf pk(x) 

=> Very useful if sampling from pk(x) can be done efficiently 

 

=> Can be applied efficiently also for complex functions, if the coefficient of the term 

described by the complex function pj(x) is aj<<1. 

  => the complex function will be sampled very rarely (with the probability aj), thus the 

total simulation time is not much affected 
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c. Rejection method (Von Neumann) 

Variable x defined in (a,b), and max(p(x))=A 

Step 1: sample x uniformly distributed in (a,b), say x = a + (b-a)  r . 

Step 2: sample a new random number r; if rA < p(x) then x=x (x is accepted), 

while if r  A > p(x) then x is rejected => go to step 1 

Efficiency=1/[A(b-a)] 

 

Improved rejection method: required when A(b-a)>>1 

Find f(x)p(x), construct q(x)=Kf(x) as a probability density function 

Step 1: sample x according to q(x) (thus x is not uniformly sampled, but closer 

to the probability density function p(x)). 

Step 2. sample a random number r; if rf(x)<p(x) => x=x, otherwise => Step 1 

Improved efficiency of the procedure 

 

F(x) not required! 
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3. Principles of  simulation of radiation transport 

Radiation propagation and interaction in matter – sequence of random events 

Complex phenomenon, however based on many individual relatively simple events 

=> Monte Carlo method – ideal tool for the simulation of radiation transport  

 

Today many computer codes are available 

- General simulation codes: 

- Advantages: realistic description of physics processes, well tested 

- Disadvantage: computing time, maybe require user intervention  

- Examples: 

- GEANT 4 (GEANT3.21) 

- PENELOPE 

- MCNP, MCNPX 

- EGS (EGS4, EGSnrc) 

- ITS - CYLTRAN 

- … 

 

- Specific purpose simulation codes: 

- Advantages: optimized for the particular problem, user friendly, faster 

- Disadvantage: sometimes limited validity 
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Proper choice of the code, correct application require: 

 Basic understanding of the Monte Carlo simulation 

 Correct definition of the problem 

 Good understanding of the functionality of the code 

 Correct, well understood, input data and code parameters 

 Correct interpretation of the output 
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• Preparatory phase for Monte Carlo simulation: 

Definition of the problem, geometry, materials (including interaction coefficients) 

 

• Typical steps in simulation (repeated many times):  

Simulation of the source, simulation of radiation propagation and interaction,  

evaluation of the results 

 

• Simulation of one history 

Simulation of the source 

Simulation of the emission point, then: 

- single particle emission: type, direction of propagation, energy, polarization  

- Full decay: put the characteristics of each particle in a particle stack (bank) – 

include additional relevant information (e. g. angular correlations) 

 

Example: a uniformly distributed source in a cylinder of radius R, height H 

Simulation of the emission point x, y, z  

Variables , , z [x=cos(), y=sin()] 

The z coordinate uniformly distributed between 0 and H: z= rH, r a random number 

uniformly distributed in (0,1) 
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Frequent error: the radial coordinate  uniformly distributed between 0 and R,  

 = rR 

Why wrong? 

Number of emission points with <R/2, N(<R/2), equal to the number of random 

numbers r<1/2, i.e. equal to 1/2 Nt 

 N(<R/2)=1/2Nt  

 N(<R/2)= N(R/2), whereas the corresponding volumes are: (R/2)2H=R2H/4 

and [R2(R/2)2]H=3R2H/4 

Emission points not uniformly distributed: half of them are distributed in the volume 

R2H/4, the other half in the bigger volume 3R2H/4. 

 

Correct sampling:  = R r  

 

Sampling the angle :  =2r 

 

Final coordinates of the emission point 

=> x=cos(), y= sin(), z=r  H 
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Simulation of the direction of propagation: isotropic distribution 

Direction described by the angles ,  

Sampling :  =2r, uniformly distributed between 0 and 2 

Sampling  

Frequent error: =r; wrong, this does not correspond to isotropy! 

Isotropy: the probability per solid angle should be proportional to the solid angle 

=> cos() uniformly distributed in (-1, 1), not  uniformly distributed between 0 and  

Sampling: cos() = 1- 2r 

 

Propagation along trajectory better described by the direction cosines:  

u=sin()cos(), v= sin()sin(), w= cos()  

u, v, w: projection of the unit vector parallel to the trajectory on the coordinate axes 

 

•  Simulation of radiation propagation: 

Propagation along the trajectory from (x0,y0,z0) to (x,y,z): 

 x=x0+ul,  y=y0+vl,  z=z0+wl,  

l the length of the trajectory from the initial point to the current point 

 

l – distance to the next interaction or to the boundary of the current volume 

 

Distance to the boundary:  

- Geometric computation 
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Distance to the next interaction 

Example: photons of energy E, linear attenuation coefficient m 

Probability density function for the distance l to the interaction: p(l)=mexp(ml)  

Distribution function: F(l)= 1 - exp(ml) 

Sample l with the method of the inverse function: => l=ln(r)/m 

 

• Simulation of the interactions (see next section) 

- place all radiations except one in particle stack for further transport;  

- start simulation of the history of the selected radiation 

 

• Stack interrogation – when current history is completed 

- Current history is completed: radiation is absorbed, or energy falls below the threshold, 

or it escape from the simulation domain; then 

 extract one particle from the stack and start the simulation for this particle until its 

history is completed 

 Track similarly all the secondary particles from the particle stack 

 

• Evaluation of the energy deposited in the sensitive volume of the detector 

 

• Repeat the simulation for many histories 

 

• Summarize the results 
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4. Simulation of the interactions 
 

- Interactions have a probabilistic nature 

 

- The probability of interaction and the state of the system after interaction 

depend on the nature of radiation, on the energy, on the properties of the 

medium 

 

- Characterization of the system after interaction: 

- Components: number, type 

- Energy, momentum, polarization, etc. 

 Probability distribution of the parameters characterizing the final state 

computed using physics laws 

 Data bases 

 

- After interaction one radiation is selected for immediate simulation, the 

parameters of the other relevant radiations are saved (particle stack)  
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Photon simulation 

Photon interactions of interest are: photoelectric (mPh), Compton (mCo), production 

of a pair electron-positron (mPair), Rayleigh (mR) (usually less important). 

 

The linear attenuation coefficients depend on the energy of the photon and on the 

medium (can be computed e.g. by XCOM) 

 

Sampling of the interaction: 

                0 < r < mPh/m   => photoelectric effect is selected 

          mPh/m < r < (mPh+mCo)/m  => Compton effect is selected 

(mPh+mCo)/m < r <  1   => Pair production effect is selected 

 

Interaction coefficients in Ge (XCOM) 
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Interaction coefficients in Pb (XCOM) 

Distance to the next interaction – based on total attenuation coefficient 

Sampling of the interaction type – based on individual attenuation coefficients 
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Photoelectric effect:  

 the incident photon is absorbed;  

 a photoelectron is produced;  

 the atom relaxation follows. 

 

Simulation requires: 

 the probability of photoelectric effect on various shells (photoionization cross sections); 

energy threshold: E=Ebi, Ebi=binding energy on shell (subshell) i  

 the angular distribution of the emitted photoelectron 

 the probability of emission of characteristic X rays  

 the probability of emission of Auger electrons 

Energy conservation: 

Photoelectron energy 

Ee=E-Ebi (ionization on shell i) 

 

X-Ray energy: 

EX=EbiEbj (transition from j to i) 

 

Auger electron energy: 

EA=Ebi-EbjEbk (bound electron transition from j to i, Auger electron emitted from k) 
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Incoherent scattering:  

 photon scattered at an angle   

 part of the energy and momentum transferred to an electron 

Scattering on a free electron – Compton Scattering 

E = photon energy before 

E = photon energy after scattering 

 = photon scattering angle 

 = electron recoil angle 

m0c
2=511 keV = electron rest energy 

Display of the cross section on a free 

electron at rest (units 1026 cm2) - Klein 

Nishina 

 
Electron binding in atom:  

 cross section decreases at low energies 

 angular distribution is changed 
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Pair production: 

 A photon with E>1.022 MeV is absorbed (in the field of a nucleus) 

 A pair of electron-positron is produced 

 

Simulation of pair production effect: 

 => simulation of the energies E of the electron and E+ of the positron, related by: 

E=E+E++2m0c
2  

       m0c
2=511 keV rest energy of electron  

 => simulation of the directions of movement;  

 => simulation of electron and positron transport;  

 => simulation of positron annihilation  

 => energies and directions of the annihilation photons  (very much 

simplified if positron annihilation in flight is negligible, two photons with 

E=511 keV emitted isotropically in opposite directions) 

 

Triplet production: 

 A photon with E>2.044 MeV is absorbed (in the field of an electron) 

 A pair of electron-positron is produced 

 Besides the pair, the recoil electron may require simulation (3 particles in the final 

state)  
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Electron and positron simulation 

Elementary processes: 

- Elastic scattering 

- Inelastic scattering 

- Bremsstrahlung emission 

 

Cross sections much higher than for photons  

=> too many interactions, generally impossible to be simulated individually 

 

Solution: condensed history schemes 

- All the interactions grouped together – energy distributions, direction distributions 

and position distributions based on the result of multiple interactions  

or, 

- Interactions resulting in a high energy loss or in a high angle scattering described 

individually, the others condensed together 
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Neutron simulation 

Individual interactions: 

- Elastic scattering 

- Inelastic scattering 

- Radiative capture 

- (n,p), (n, ) reactions 

- fission  

 

Small cross sections, individual interactions may be described, but additional 

complications 
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Complications: 

- Cross sections dependence on energy – too many histories required to sample adequately 

the effect of the energy dependence of the cross sections in the resonance regions 

- Multigroup cross sections 

- In nuclear reactor core: the source is not known before the simulation 

- The method of successive generations (with/without regularization) 
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5. Variance reduction techniques 

Purpose: achieving results with lower variance in a shorter computation time 

 

The probability method (the mean value method) 

Example: interactions in a thin disc 

Problem: a point source located far from a thin disc emits photons which may suffer 

Compton scattering in the disc. Purpose of simulation: evaluation of the probability 

of registering a scattered photon in a detector located off axis. 

O. Sima, ICRM GSWG, Paris, June 2018 

31 



1. Photons are emitted only towards the disc =>  is sampled isotropically up to M:  

  cos()=cos(M)+[1-cos(M)]r  

- A weight factor w1=/(4)=[1-cos(M)]/2 is assigned to each photon 

 

2. The photons directed towards the disc are forced to interact; an additional weight 

factor is introduced, w2=P(l())=1exp[ml()] (the actual probability of interaction on 

the trajectory in the disc) 

 

3. The point of interaction is sampled from the distorted probability density  function 

restricted to l<l(): Pd(l)=P(l|l())={1exp(ml)}/{1exp[ml()]} 

 l=1/mln{1-r[1exp(ml())]} 

 

4. Compton scattering is forced, and an additional weight factor w3=mC/m is introduced 

 

5. If the scattered photon interacts with the detector, the weight factor w=w1w2w3 is 

cumulated 

 

Finally, after emitting a big number N of photons, the required probability per source 

photon is p=W/N, with W the cumulated weight 
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Russian roulette and particle multiplication 

Russian roulette avoids spending time with particles with a too low weight. 

 

Two weight limits are set, WL<<WS  

 If w>WL normal simulation, w the weight of the particle 

 

If w<WL, then if r>w/WS the particle is killed, otherwise the weight becomes WS  

=> Because w/WS is small when w<WL, very rarely r<w/WS, thus most frequently 

the particles with low weight (w<WL) are killed 

=> The average weight remains unchanged 

 

Particle multiplication: 

- Better description of details for events of interest 

 

1 particle of weight w replaced by n particles of weight w/n each 

Example: evaluate the energy deposited in the 

small volume around A, far from the source S 

- Particles going towards A are multiplied, with 

reduced weight each – chance of A being hit 

by a particle increases 

- Particles departing from the region of A are 

frequently killed when passing the surface  
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Useful features 

 Particle simulation algorithms do not require modifications 

 The parameters can be optimized after a learning simulation 

 

Importance sampling 

Example: purpose of simulation: the mean value of y=f(x), where x is a random 

variable with probability density function p(x) 

 

Standard simulation: 

Mean of y is estimated by sampling n values x1, x2, … xn of x, according to p(x) 

 estimator: 1/nf(xi) 
 

Importance sampling 

Construct a distorted probability distribution function q(x), ideally q(x)=K|f(x)|p(x), 

K normalization constant 

Construct a new function g(x)=p(x)/q(x)f(x) 

 

Simulation: sample n values x1, x2, … xn of x, according to q(x) 

 estimator: 1/ng(xi) 

 

 Particle simulation algorithms should be changed (another pdf, q(x) instead of p(x)) 

 Specific applications in reactor physics 
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Correlated sampling 

 

- Best to evaluate the effect of small (or not so small) changes 

- The variance of correlated variables is lower 

Example: efficiency transfer = ratio of efficiency for source A to efficiency for source B 

- In the simulation of radiations emitted by nuclides belonging to the common 

part of the volumes (intersection of the two volumes), use the contribution of 

that history for the evaluation of the efficiency for both sources 

- Variance of the ratio of the efficiencies (efficiency transfer factor) due only to 

points belonging only to a single volume (outside of the common part) 

 

Example: coincidence summing effects 

- Evaluate simultaneously the contribution to the full energy peak efficiency in 

the absence of summing and with summing 
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6. Physical Model - limitations 

 

Definition of quantities 

- Precise specification of what should be simulated is required 

- Should variance reduction be included? 

- Or only analog simulation, for obtaining also the distribution? 

- Personal preference: best estimate and its uncertainty, distribution due to 

statistics of the number of decays evaluated separately 

- Variance reduction techniques acceptable, however used with caution 

- In gamma spectrometry, precise definition of the full energy peak efficiency (FEPE) as 

used in measurement is required 

- Experimental FEPE is obtained by Gaussian integration, or by summing the counts 

in the spectrum e.g. between 1/10 limits of the peak height? 

- Small angle Compton scattering is included? 

- If yes, FEPE depends on the environment 

- How is FEPE obtained in simulation? 

- Full spectrum simulation with or without Gaussian broadening? 

- Simulation only of potential cases when the complete energy is deposited in 

the crystal? 

- Faster simulation, more efficient (focalized emission, forced interaction 

in the sensitive volume, exponential attenuation outside detector) 

- Balance between details included in the simulation model and the time required 

(affecting the variance of results) 
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Description of the phenomena – is it sufficiently detailed? 

- Coincidence summing: 

- Angular correlations are included? 

- Groups with multiple photons are treated? 

- Volume sources integration or quasi point source approximation? 

- Efficiency: 

- Geometry of the source is realistic? e.g. 

- Solution in ampoule – presence of meniscus (depending on solution)? 

- Radon diffusion, radon decay products deposited on surfaces? 

- Granularity? 

- Definition of the volume – free surface of the sample is not really a 

plane  

- Inhomogeneity effects? 

- Self-attenuation: 

- Homogeneity approximation? 
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Physical Model 

- Interactions – cross sections 

- Description 

- Tables of values and interpolations – energy range, number of values 

- Electron and positron interactions – condensed history 

- Neutron interactions – multigrup cross sections 

- Problems also for photons at absorption edges 

- Knowledge of cross sections – e.g. very high energy cosmic rays 

- Medium properties 

- Charge collection (commonly not included in simulation) 

- Structure of the dead layer 

- Different dead layer thickness for peak efficiency than for total 

efficiency (p-type detectors) 

- Experimental configuration 

- Detector geometry 

 

- Validation required 
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7. Conclusions 

 

- Monte Carlo simulation is a very powerful method with many applications in 

gamma-ray spectrometry 

 

- Many computer codes are available, complex calculations are currently done 

- Generally the codes  are user friendly, but be careful! 

- Sometimes approximations are implemented, the validity domain 

insufficiently documented 

- Good understanding of the basics and of the specific tool very useful 

 

- Still incomplete models 

 

 Validation required for well defined cases 

 

- Preferably apply Monte Carlo simulation for the evaluation of correction factors 

 

 Best results in calibration: combination of experiment and Monte Carlo simulation 
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