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1. Self-attenuation dependence on experimental conditions 

Self-attenuation effects depend mainly on: 

- linear attenuation coefficient   

• sample composition and density, photon energy E 

• evaluation: theoretical values (known composition) or experimental 

values (transmission experiments) 

- sample geometry 

 

Much weaker dependence of self-attenuation effects on: 

- detector (dimensions, type) 

- sample position 

- photon energy (direct dependence, distinct from the implicit dependence 

through the value of (E)) 

 

Problems related to the contribution to the peak area of small angle Compton 

scattering 

O. Sima, ICRM GSWG, Paris, June 2018 
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Absolute self-attenuation correction factor for a bulk sample with matrix m: 

Fa(E;m)=(E;m)/0(E)  

(E;m) = efficiency for the sample with matrix m 

0(E) = efficiency for a sample with negligible self-attenuation 

Both samples measured in the same configuration (identical sample geometry, 

same detector) 

 

Relative self-attenuation correction factor for a sample with matrix m1 with 

respect to a sample with matrix m2: 

Fa(E;m1;m2)=(E;m1)/(E;m2)=Fa(E;m1)/Fa(E;m2) 

 

Note: 

- Fa can be computed with a much lower uncertainty that  

 

 Best procedure to obtain (E;m) for a matrix m in the absence of a standard 

with that matrix: 

(E;m)=Fa(E;m;s)(E;s) 

(E,s) = experimental efficiency for a standard with matrix s 

Fa(E;m;s) = computed self-attenuation correction factor 



Evaluation of the linear attenuation coefficient 

 

If the composition is known: 

-Tabulated values 

Example of high attenuation cases: 

- Efficiency reduction by 10 – 20 times due to self-attenuation 

Experimental values: D. Arnold (PTB), E = 46.54 keV (210Pb) 

- Lead with known activity of 210Pb 

- Theoretical values: GESPECOR 

 

 

 

 

 

 

 

 

 
Source: Sima and Arnold, ARI 47 (1996) 889; Sima, ARI 47 (1996) 919 

If the composition is not known: 

-Transmission measurements with collimated sources: T=R/R0=exp[-(-0)d] => 

-Uncollimated point source transmission measurements – Cutshall method 

O. Sima, ICRM GSWG, Paris, June 2018 
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Uncollimated beam transmission experiments 

- Point source placed directly above the sample 

- Measure count rate with the sample R and with an identical empty container R0 

-Advantage: low activity sources can be used 

-Disadvantages:  

-The path lengths through the sample are not constant 

-Each path has a different probability to contribute to peak count rate 

-Low angle Compton scattering 

-Coincidence summing effects can seriously distort the results 

-Single gamma emitting nuclides should be used 

 -Correct results: realistic simulation of the experiment is required 

-Transmission factor computed by Monte Carlo [ Cutshall approximation = exp(-d) ] 

O. Sima, ICRM GSWG, Paris, June 2018 



Transmission factors (logarithmic scale). Sample: R=3.5, H=2 cm 

Linear attenuation coefficient (1/cm) 
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Correct value of T – smaller than exp(d) (inclined trajectories result in higher attenuation) 



 (%) = rel. difference between the correct value and the value based on T=exp(d)  

Energy (keV) 
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Sima and Arnold, Appl. Radiat. Isot. 56 (2002) 71 

In the presence of coincidence summing effects, very difficult to get correct results 

O. Sima, ICRM GSWG, Paris, June 2018 

Soil sample, R=3.5 cm, H=2 cm. 

=peak efficiency 
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n-type p-type p-type n-type 

Fa depends mainly on linear attenuation coefficient  and on the 

geometry of the sample 

 

Is it a property of the sample and of the matrix? 

-Slight dependence on the detector: 

-Dimensions: paths 2,3,4 contribute both for a  

small and for a big detector; 1,5 only for big 
-Type (p, n) – inclined trajectories – dead layer 

If the value of  is fixed, does Fa depend on E ? 

   - n-type detector – low energy: trajectories 1 and 

5 contribute, at high energy not 

1 

2 
3 

4 

5 

- p-type detector – more complex, higher probability of complete absorption 

in the peak versus higher absorption in the dead layer at low photon energies 

Sima, Progr. Nucl. Energy 24 (1990) 327 

For the same sample and detector Fa depends on the distance between the 

sample and the detector 

O. Sima, ICRM GSWG, Paris, June 2018 
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If two matrices have 1(E0) = 2(E0) = 0 and are in identical containers, 

measured with the same detector in the same configuration, is Fa1(E0; m1) 

equal to Fa2(E0; m2) ? 

   - closed end coaxial detectors: yes 

   - well-type detectors: not 

Compton 

ED1=E0-E’ 

ED2=E’ 

If ED1+ED2 = E0 => signal in the peak of 

energy E0  (ED=energy deposited in detector) 

   - the probability of traversing the sample at 

energy E depends on (E)  

 => Rigorously in the case of well-type detectors Fa depends on the complete 

curve (E) for E<E0 and not only on the value 0 of (E) for E= E0 

 => In current conditions self-attenuation effects are small in the case of well 

type detector – the dependence of Fa on the complete curve  (E) is very weak 

 

Sima and Arnold, Appl. Radiat. Isot. 47 (1996) 889 

O. Sima, ICRM GSWG, Paris, June 2018 
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Observation: 

-In case of high attenuation only a thin layer of the sample located close to 

the detector is important; e.g. for =10 cm-1 only a layer of a few mm is 

important 

If that layer is not representative for the complete sample (non-

homogeneity of matrix or of the radionuclide distribution) then wrong 

values are computed for the efficiency of the sample on the basis of the 

measured efficiency for the standard and of the computed values of Fa . 

 

-In case of grains, at very high attenuation the distribution of activity inside 

the grains is very important 

   Example: Forster and Umbarger, NIM 117 (1974) 597 – metallic spheres 

containing Pu 

 

 

O. Sima, ICRM GSWG, Paris, June 2018 
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Problems related to small angle Compton scattering 

Contribution of Compton scattered photons to the peak area: 

13% (sample with R=4.5 cm), 10% (sample with R=1.5 cm)  

=> depends on sample and on detector resolution 
O. Sima, ICRM GSWG, Paris, June 2018 
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Water sample 

R=4.5 cm, H=4 cm 

 

Compton contribution 

under the peak of 45 

keV: 13% 

 

The linear or the step 

approximation for the 

background do not 

remove completely this 

contribution 

Sima and Arnold, ARI 

67 (2009) 701 

O. Sima, ICRM GSWG, Paris, June 2018 
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2. Sources with intrinsic inhomogeneity 

Sima, ARI 126 (2017) 146; Sima, ARI 134 (2018) 137 

Environmental 

medium 

Class 1  

Component 

(main matrix; 

blocks not shown) 

 

Embeded: 

Class 2 

Component 

 

Class 3 

Component 

Sample of 

environmental 

medium 

Parallelepiped Sample 

Random effects (number and position of blocks of each type) =>uncertainty 

Systematic effects (activity segregation in different blocks) => distortion of efficiency 

O. Sima, ICRM GSWG, Paris, June 2018 
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Monte Carlo simulation of the distribution of efficiency values 

Step 1: 

- Preparation of the input data characterizing a sample: 

- For blocks j=1 to Nt sample the class, according to the probabilities pi 

- Save block class and position 

Step 2: 

- Simulation of the efficiency for the given sample 

- Randomly select the emission point, according to activity distribution 

- Transport the photon through the source taking into account the matrix 

distribution 

- Evaluate the efficiency using the procedures available in the standard 

version of GESPECOR  (Sima, Arnold and Dovlete, JRNC 248 (2001) 

359) 

Repeat Step 1 and Step 2 many times 

Step 3 

- Construct and summarize the distribution of the values of the peak efficiency  

- Best estimate of the efficiency 

- Standard uncertainty 

 

Implemented as an extension of GESPECOR 

 

O. Sima, ICRM GSWG, Paris, June 2018 
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- Case 1: relatively weak inhomogeneity 

- Soil ref.1 from Kaminsky et al. (ARI 94 (2014) 306)  

- classes: specific minerals, organic matter and air. Fraction by weight 

and density (g cm3) given  below: 

 

 

 

 

 

- One additional class: air, fraction by volume (NTP) 0.2 

 

 

- Case 2: high inhomogeneity 

- Soil including pitchblende grains 

  

- In both cases, interest for nuclides from U-Ra decay chain: 46.5 keV 

(210Pb), 92.4 keV (234Th), 186.2keV (226Ra), 1001.44 (234mPa) 

 

- Sample: 5x5x2 cm, detector: 47% efficiency n-type HPGe 

Examples 

SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO P2O5 Org 

66.9 13.8 4.1 1.7 2.9 2.2 2.8 0.5 0.1 0.2 5.0 

2.65 4.0 5.25 3.58 3.34 2.27 2.30 4.0 5.43 2.39 1.0 

W 

 

O. Sima, ICRM GSWG, Paris, June 2018 
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Case 1 

 

- Construction of the equivalent homogeneous matrix, containing the same 

total mass of each component, uniformly distributed in the same total 

volume (index 0 for quantities evaluated for the homogeneous matrix) 

- Monte Carlo calculation of the efficiency 0 for the homogeneous matrix 

- Definition of the scale of the inhomogeneity (dimension of the blocks): two 

values, d=0.0167 cm and d=0.1 cm 

- Activity distribution between classes: 

- Several scenarios, from extreme cases when the activity is completely 

imbedded in one component, to more homogeneous (same activity in 

each component) 

- Monte Carlo simulation of the efficiency i for each scenario  

- Inhomogeneity effects higher for the photons with E=46.5 keV 

Activity of the elementary block d=0.0167 d=0.1 
SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO P2O5 Org /0 R/R0 /0 R/R0 

1 1 1 1 1 1 1 1 1 1 1 1.01 1.01 1.04 1.03 

2 1 1 1 1 1 1 1 1 1 1 1.01 1.01 1.04 1.03 

10 1 1 1 1 1 1 1 1 1 1 1.01 1.01 1.04 1.04 

50 1 1 1 1 1 1 1 1 1 1 1.01 1.01 1.04 1.04 

1 0 0 0 0 0 0 0 0 0 0 1.01 1.01 1.04 1.04 

1 1 1 1 1 1 1 1 1 1 2 1.01 1.01 1.04 1.04 

1 1 1 1 1 1 1 1 1 1 10 1.01 1.01 1.05 1.04 

1 1 1 1 1 1 1 1 1 1 50 1.01 1.01 1.07 1.05 

0 0 0 0 0 0 0 0 0 0 1 1.01 1.01 1.07 1.05 

0 0 1 0 0 0 0 0 0 0 0 0.95 0.96 0.76 0.80 

/0 for 46 keV 

R=(46)/(92) 

O. Sima, ICRM GSWG, Paris, June 2018 

17 



Conclusion: 

Generally the inhomogeneity effects are not important 

For accurate evaluation of the efficiency, information on activity distribution 

among components is needed 

 

In the absence of information on activity distribution among components, 

uncertainty evaluation should include a contribution resulting from the lack of 

specific knowledge on activity distribution, besides uncertainty resulting from 

the block distributions 

- Results: generally i differs from 0 by about 1% in the case of d=0.0167 cm, 

and by <5% for d=0.1 cm; exceptions: 5%  (d=0.0167 cm) and 25% (d=0.1 

cm) in the case when the activity is completely imbedded in Fe2O3. 

 

- Activity distributed on the surface of the blocks (except for air blocks): 

efficiency differs from the efficiency for the homogeneous matrix and 

uniform activity by less than 3% (scenario Fe2O3, d=0.1 cm) 

O. Sima, ICRM GSWG, Paris, June 2018 
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Case 2 (high inhomogeneity) 

 

- Soil including pitchblende grains 

- Classes:  

- typical soil, density 1.2 gcm3, probability of blocks p1 

- Pitchblende (UO2), density 10.8 gcm3, probability p2 (denoted by P) 

- Air, density 0.0012 gcm3, probability p3 

 

- Interest for nuclides from U-Ra decay chain: 46.5 keV (210Pb), 92.4 keV 

(234Th), 186.2 keV (226Ra), 1001.44 (234mPa) 

- Sample: 5x5x2 cm, detector: 47% efficiency n-type HPGe 

 

Simulations parameters: 

- d  (0.0167, 0.25) cm 

- Air blocks probability = 0.2, Pitchblende blocks probability P  (0.00005, 

0.01); specific simulations made also for P=0.025, 0.05, 0.1, 0.25, 0.50. 

- Air blocks activity = 0; ratio between the activity of pitchblende component 

and the total activity AP/AT  (0, 1). 

 

- For each P the equivalent homogeneous matrix was constructed, 0 was 

evaluated 

- For each (d, P, AP/AT) the efficiency  was evaluated 

O. Sima, ICRM GSWG, Paris, June 2018 
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Efficiency decrease with N2: higher attenuation if more photons emitted from pitchblende  

O. Sima, ICRM GSWG, Paris, June 2018 
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Efficiency ratio as a function of activity distribution. P=0.005, d=0.05 cm  

O. Sima, ICRM GSWG, Paris, June 2018 
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- The best estimate of the efficiency and the standard deviation depend on the 

parameters of the model of inhomogeneity, thus in principle differ from the 

results obtained assuming the homogeneity of the sample 

 

- The deviations are higher in the case of low energy, large elementary blocks and 

high inhomogeneity (e. g. one highly attenuating component) than in the 

opposite cases 

 

- In the case of weak inhomogeneity the efficiency calibration using homogeneous 

standards or spiked samples gives usually acceptable results for environmental 

assessment 

- In the case of high inhomogeneity, it is recommended to evaluate the efficiency  

for the particular composition and granulometry of the sample by Monte Carlo 

simulation instead of using the homogeneity approximation 

 

- In these cases additional information concerning activity distribution among 

components is required for the evaluation of the efficiency with low uncertainty 

 

- In absence of such information, a realistic evaluation of the uncertainty can be 

obtained by simulations using reasonable scenarios of activity distribution 

among the components. 

 

O. Sima, ICRM GSWG, Paris, June 2018 
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3. Marinelli beaker samples 

 

- Advantage: highest efficiency for high volume samples 

- Self-attenuation computations: 

- Monte Carlo (e.g. GESPECOR, MEFTRAN) 

- Simplified analytical formula 
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- spiked reference materials prepared 

from different matrices (Jerome et 

al.,  Nucl. Instrum. Meth.  A 339 

(1994) 55) 

- Experimental efficiencies 

determined for each sample 

- Self-attenuation correction factor 

computed by the formula, using  

based on sample composition 

- Correction factor applied to 

experimental efficiencies for 

computing the expected efficiency 

for a gel sample with density 1 

g/cm3 – P. De Felice et al. 

=> Equivalent peak efficiency for the gel matrix almost independent of the 

matrix of the reference material 

O. Sima, ICRM GSWG, Paris, June 2018 

Example – Marinelli beaker of 1000 cm3  
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4. Applications of self-attenuation computations 

 

• Computation of the efficiency for a sample with matrix m on the basis of a 

standard with a different matrix s: 

  (E; m) = Fa(E; m; s) (E; s) 

 Both general purpose programs (GEANT, MCNP) and specific purpose 

programs have been applied, especially for environmental samples 

 

• Compatibility test of reference sources with the same geometry but 

different matrices m1, m2, .., mk 

  (1)(E; 0) = Fa(E; 0; m1) (E; m1) 

  (2)(E; 0) = Fa(E; 0; m2) (E; m2) 

 The values (1)(E; 0), (2)(E; 02) … should be compatible.  

 The best value of (E; 0) is their weighted average if all are compatible. 

 This best value should be used for the computation of the efficiency for 

other matrices 

 

• Estimation of the efficiency for a bulk sample with a volume higher than 

the volume of available certified reference material (CRM) 

  
O. Sima, ICRM GSWG, Paris, June 2018 
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In the case of vacuum sources the count-rate (CR) for the big source satisfies: 

 CR4(3S) = CR1(S) + CR2(S) + CR3(S) 

 

D D D D 

S 

S 

S 

 

    1                   2                  3                             4 

S 

S 

S 

Correct the effects of self-attenuation:  i(E; 0) = Fai(E; 0; m) i(E; m) 

 Linear relations between the values of efficiency in geometry 4 and the 

efficiencies in geometries 1, 2 and 3 with reliable coefficients 

V(E; 0) = [1(E; 0) V1 + 2(E; 0) V2 + 3(E; 0) V3]/V, with V=V1+V2+V3 

> V(E; m) = FaV(E; m; 0) V(E; 0) 

(Sima and Dovlete, JRNCL 200 (1995) 191) 

Sources bigger than the CRM available 

O. Sima, ICRM GSWG, Paris, June 2018 
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5. Summary and conclusions 

- Self-attenuation effects are very important in the measurement of volume 

samples 

- Depend mainly on linear attenuation coefficient (E) and sample geometry 

- More important at low energies 

- Slight dependence of self-attenuation on experimental details 

- The linear attenuation coefficient can be obtained using 

- Sample composition and density, or 

- Transmission measurements – caution in the case of uncollimated beam! 

-  Reliable values of the self-attenuation correction can be computed for 

homogeneous samples 

- Problems in the case of samples with high intrinsic inhomogeneity 

Applications: 

- Efficiency calibration for samples with any matrix using the computed self-

attenuation corrections and the measured efficiency for a standard matrix with 

the same geometry 

- Consistency check of the efficiency curve for different matrices 

- Estimate efficiency for samples of larger volumes than the volume of the 

standard, using properties of efficiency for samples with negligible attenuation 

O. Sima, ICRM GSWG, Paris, June 2018 
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