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CURVE FITTING

• A set of n experimental points (with their uncertainties) is available 

• We wish to adjust a mathematical function to these points

1/ How we do that?

2/ What uncertainty can be attributed to the fitting function?
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EXAMPLE OF CURVE FITTING

sample
experiment

reality

model

Fitting process: 

• optimize a and b for the maximum 

likelihood of the model
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CURVE FITTING
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Consider n experimental samples: 

And a mathematical model with various parameters:

• Find the best estimate of the parameters a, b, c,… for which the model is a 

good fit to the experimental points

• Evaluate the uncertainties of these parameters and of the fit

• Evaluate a posteriori the quality of the fit

iiii cbaxfxy  ...),,,()(

i : random variable with (if possible) mean value ~ 0
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GOAL OF A FIT

• To understand the physical laws governing an experiment 

• To obtain a mathematical function easier to manage than a set of 

experimental points with individual uncertainties

• To interpolate between the points

• To extrapolate…
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INTERPOLATION 1
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8 keV, R= 0.99

13 keV, R= 0.99
Interpolation : 9 keV, R= 0.99
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With a better sampling, it can be observed that R= 0.97 

at 9 keV (Cu)

INTERPOLATION 2
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INTERPOLATION GENERAL RULES

Interpolation is applicable when there is no change of the physics between 

the experimental points, i.e.

• Smooth and continuous variation

• No discontinuity

• No phase transition
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EXTRAPOLATION
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BEST FIT, MAXIMUM LIKELIHOOD

Given a set of n experimental points (xi, yi) and a fitting function y=f(x,a, b,…) with 

parameters a, b,…

Calculate the probability, P(yi,f(xi)), that f(xi) is equal to yi (within dy)

For this data set of n points, the likelihood, L, is the product of the probabilities 

that the value of each experimental point, yi, is a statistical fluctuation of the 

function f(xi):
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The best fit is obtained when  L is maximized



11

GAUSSIAN FLUCTUATIONS
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The probability that yi is a Gaussian random fluctuation of f(xi) (within dy) is:

The likelihood is:

Maximizing L is equivalent to minimizing –L or –log(L):

n and dy being constant, the maximum likelihood corresponds to a minimum of:
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Known as c2  minimization
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IF ALL THE POINTS HAVE THE SAME UNCERTAINTY
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Least squares minimization

Thus: c2 or least squares fitting is only a maximum likelihood procedure if the 

experimental fluctuations are Gaussian

Minimization of:
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BUT IS REALITY NORMAL?

Gaussian distribution, mean M and standard deviation u

• 68 % of the population is in the (M  1u) interval

• 95 % of the population is in the (M  2u) interval

• 99,7 % of the population is in the (M  3u) interval

•99,9994 % of the population is in the (M  5u) interval

But, the probability (frequency) to have an experimental point as far as 5u

from the mean, even in an outstanding metrology lab, is likely to be larger 

than 3·10-4 %....

Thus before using c2 or least squares fitting, better remove the outliers
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WHAT ABOUT ADJUSTMENT QUALITY?
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It is always possible to fit experimental points to any function… but sometimes it is 

better not to!

Example of linear regression
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FIT OF A DETECTION EFFICIENCY CURVE IN GAMMA 

SPECTROMETRY

Physical model: efficiency decreases at low energy (window, dead-layer) and 

photons escape at high energy (with possible discontinuities due to K edges)

Physical model is seldom used 

Arbitrary (albeit convenient) model: nth order polynomial function

Known theorem: it is possible to exactly adjust an nth order polynomial 

function to n points… but generally it is better to choose a lower order
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EXAMPLE OF TOO SMALL ORDER (1)

Poor adjustment!
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EXAMPLE OF TOO LARGE ORDER (8)

Poor adjustment (but perfect residues)
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HOW TO QUANTIFY THE GOODNESS OF FIT?
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By calculating Q(c2,n) that the Chi-squared should exceed a particular value  

c2 by chance: 

The number of degrees of freedom, n is the number of points minus the number 

of adjusted parameters
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Q > 0,1: fair fitting

0,1 > Q > 0,001: acceptable fitting if uncertainties are underestimated

Q < 0,001: better try another fitting…
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• A too low value of Q reveals an inconsistency in the fitting process (model, or 

fitting criterion)

• Q=1 (too nice to be true), could indicate a large overestimation of the 

uncertainties, or synthetic results calculated from the model…

• Simple empirical rule: for a fairly good adjustment, the c2 value should be 

close to the degrees of freedom of the problem (i.e. if n points and a function 

with k parameters, n = n - k

More precisely, for large values of n , the c2 distribution converges towards a 

Gaussian distribution of mean n and standard deviation of 2n

HOW TO QUANTIFY THE GOODNESS OF FIT?
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GAMMA SPECTROMETER EFFICIENCY CURVE

Example where 4 calibration values are considered at 136.47 keV. What is the 

best strategy: consider the 4 values with associated uncertainties or calculate a 

mean value with associated uncertainty?

If the 4 calibration points are independent (i.e. obtained using non-correlated 

sources) these 4 values can be taken into account, increasing the weight of this 

calibration point

The other possibility is to reduce these 4 values to 1, by calculating the mean 

and the standard deviation of the mean, but possible covariances must be taken 

into account in this calculation (some common uncertainty components could 

exist, if the sources are made in the same laboratory) 
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IF ALL CALIBRATION POINTS WERE TOTALLY UNCORRELATED

The same calibration curve is explored (and sampled) and there is a 

reduction of the global uncertainty, through the averaging process

In theory, the uncertainty vanishes when using an infinite (large) number 

of calibration points…

In practice, the calibration points are correlated (obvious example of multi-

peaks gamma emitters), but the correlation could come from a common 

bias in primary calibration methods

It is thus prudent to consider a minimum value of the uncertainty (e.g. by 

considering the minimum uncertainty of a calibration point near the ROI) 
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LIMITATION OF THE AVERAGING PROCESS

The uncertainty resulting from the averaging of the results obtained using 

several sources cannot be lower than the intrinsic limitations of the 

uncertainty of a source (e.g. uncertainty due to the weighing process or 

intrinsic uncertainty of the primary measurement method used to calibrate 

the source)

In case of doubt, consider the use of an infinite number of sources. In this 

case, can the uncertainty converge towards zero, or could it be considered 

that a systematic (but unknown) bias can occur making unrealistic a zero 

uncertainty?
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PRACTICAL CASE: RATIO OF GAMMA-RAY EMISSION

INTENSITIES

Sometimes, the goal of gamma spectrometry is to give relative intensities of 

peaks (i.e. intensities compared to a reference peak supposedly known without 

uncertainty)

How to calculate relative uncertainties?

Origin of the problem: the reference emission is deduced from the analysis of 

the spectrum and thus is affected with an uncertainty. Is it necessary to 

consider it in the calculation?
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ORIGIN OF THE UNCERTAINTY OF THE REFERENCE PEAK

Uncertainty: 

• of the activity of the source

• of the detection efficiency

• from counting statistics, peak fitting and background subtraction

• the uncertainty of the source activity will impact all the emissions and thus 

is totally correlated with the uncertainty of the reference peak 

• counting uncertainty and background uncertainty of the reference peak 

must be taken into account but, are likely to be negligibly small (if the 

reference is well chosen)

• uncertainty on the detection efficiency must be taken into account but the 

correlation must be taken into account (especially if the peaks are close to 

the reference peak)

•Peak fitting uncertainty?
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THUS

The reference peak is normalized, but, as it is the result of a measurement, 

it is only known by its estimator and has an intrinsic uncertainty

Thus this uncertainty must be considered in the calculation of the intensity 

ratio using the formula of propagation of variances (or a Monte Carlo 

method)

Common uncertainty components for all peaks must not be taken into 

account (e.g. activity of the source) 

For peak fitting and efficiency curve uncertainties, there is no general rule
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CURVE FITTING OF POINTS WITH UNCERTAINTIES IN X AND Y

The Monte Carlo method is probably the easiest way

• Consider n points (xi,uxi,yi,uyi), i=1,n

• The probability density function is assumed (Gaussian, uniform,…)

The calculation is repeated k times and we get k values of a, b, c,…

Calculation of the arithmetic mean of the k values of each parameter

Calculation of the variance/covariance matrix

standard uncertainty of each parameter

covariances between the parameters

Calculation of a set of random fluctuations ((x1,y1), (x2,y2)…(xn,yn)) 

Curve fitting on each set f(x,a,b,c…) giving a, b, c, …
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UNCERTAINTY OF THE FIT

Example efficiency curve, Gaussian fluctuations of the points:

• Calculate a centered Gaussian G(0,1) 

• Calculate the fluctuations of the experimental points 

eff1=eff0+seff0*G(0,1) 

• Calculate the polynomial, e.g. eff1=a+b*E+c*E2+d*E3

• Repeat this calculation n times

• Calculate the mean, the standard deviation of the mean, the covariances
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THANK YOU


