

www.cea.fr www.nucleide.org Evaluation of uncertainties, the Monte Carlo method (GUM supplement 1)

Philippe Cassette Laboratoire national Henri Becquerel, France

Supplement 1 to the GUM

https://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf

First edition 2008

© JCGM 2008

INPUT QUANTITIES DATA SET

- Experimental data: random sampling of available data
- Parameters : GUM supplement 1 recommendation (maximum of entropy):
 - If the mean and the variance are known, use Gaussian pdf G(M,s)
 - If realistic boundaries are known, [a, b], use uniform pdf U[a,b]
 - If other *pdf* are suitable, use them!

Subjective evaluation cannot be excluded

GUM supplement 1 recommendations

Available information	Assigned PDF and illustration (ne	ot to scale)
Lower and upper limits a, b	Rectangular: R(a, b)	
In exact lower and upper limits $a\pm d,$ $b\pm d$	Curvilinear trapezoid: $\operatorname{CTrap}(a, b, d)$	
Sum of two quantities assigned rectangular distributions with lower and upper limits a_1 , b_1 and a_2 , b_2	Trapezoidal: Trap (a, b, β) with $a = a_1 + a_2$, $b = b_1 + b_2$, $\beta = (b_1 - a_1) - (b_2 - a_2) /(b - a)$	
Sum of two quantities assigned rectan- gular distributions with lower and up- per limits a_1 , b_1 and a_2 , b_2 and the same semi-width $(b_1 - a_1 = b_2 - a_2)$	Triangular: T (a, b) with $a = a_1 + a_2, b = b_1 + b_2$	
Sinusoidal cycling between lower and upper limits a, b	Arc sine (U-shaped): $U(a, b)$	

GUM supplement 1 recommendations

COD

Available information	Assigned PDF and illustration (not	to scale)
Best estimate x and associated stan- dard uncertainty $u(x)$	Gaussian: $N(x, u^2(x))$	
Best estimate x of vector quantity and associated uncertainty matrix U_x	Multivariate Gaussian: $N(x, U_x)$	
Series of indications x_1, \ldots, x_n sampled independently from a quantity having a Gaussian distribution, with unknown expectation and unknown variance	Scaled and shifted t: $t_{n-1}(\bar{x}, s^2/n)$ with $\bar{x} = \sum_{i=1}^n x_i/n$, $s^2 = \sum_{i=1}^n (x_i - \bar{x})^2/(n-1)$	\square
Best estimate x , expanded uncertainty U_p , coverage factor k_p and effective de- grees of freedom ν_{eff}	Scaled and shifted t: $t_{\nu_{eff}}(x, (U_p/k_p)^2)$	\square
Best estimate x of non-negative quan- tity	Exponential: $E_x(1/x)$	
Number q of objects counted	Gamma: G(q + 1, 1)	\bigwedge

CORRELATED INPUT QUANTITIES

- Experimental data: calculate experimental covariance
- Parameters: example P_{K} , P_{L} et P_{M} for electron capture

$$\sum_{i} P_{i} = 1$$
 In a first approximation consider uncorrelated values of P_{K}
and P_{L} and calculate $P_{M} = 1 - (P_{K} + P_{L})$

Unfortunately, the decay data evaluations do not provide the covariance matrix, but only the diagonal terms (variances)

PRACTICAL TOOLS 1

The LNE-MCM softwarehttps://www.lne.fr/en/node/1263(presently in French, but the LNE-Uncertainty software in English will be released soon)

17th International Congress of Metrology, 02012 (2015)
DOI: 10.1051/metrology/201502012
© Owned by the authors, published by EDP Sciences, 2015

A user-friendly software for a simple and validated implementation of GUM Supplement 1

Géraldine Ebrard^{1,a}, Alexandre Allard¹ et Nicolas Fischer¹

¹Laboratoire national de métrologie et d'essais, Trappes, France

MANUEL DE L'UTILISATEUR

LOGICIEL LNE-MCM 1.0

décembre 2015

VERSION 1.0

~	Import Excel	_	B Sai	sie des données	С	Modification des données	D Réinitialisation
				Etano 1 : spécificatio	n du(es) modèl	e(s) de mesure	L
1)				Lape I. specificatio	an dules / model	e(s) de mesure	
_	Nombre de grandeur	s d'entrée	7	Nommer	E1.1 Nom	bre de grandeurs de sortie	1 Nomm E1
lodèle	mathématique dm	E1.2	(mRc+d	mRc)*(1+(ra-ra0)*(1/rW	/-1/rR))-mnc E1	.3 Valider V Aide	à l'écrite E1.4 dèle Cosinus -
-					<u> </u>		
2))			Etape 2 : quantificat	ion des source	s d'incertitude	
-		1			Dist	tribution normale multivariée	Distribution de Student multivariée
Nom	Type de distribution	Movenne	Parametre 1	Parametre 2	_		
dmRc	Normale	Movenne	1 2340e-06 Ecart typ	e 2.0000e-08			
ra	Uniforme	Binf	1 1000 Bsup	1 3000			
ra0	Constante	Valeur	1,2000	1.0000	Matrice	de variance-covariance *	
rW	Uniforme	Binf	7000 Bsup	9000 mRc dmRc		mRc dmRc	
rR	Uniforme	Binf	7950 Bsup	7950 Beun 8050 mDa 2 5000e 15		2 5000e 15 0	
mnom	Constante	Valeur	0 1000		denRe	0 4 0000e-16	
		E	2.1		Girine		
			-			\frown	\frown
4	111	i.		~	•	E2.2	E2.3
				Valider	/		Valida
-					-		vander
F2				Etape 3 : sim	ulation et prop	agation	
	/			1		C	
-	Graine ('seed	1") E3	.1 Aléatoire	•	Grandeur	d'entrée X Afficher E3.	2) randeur de sortie Y Afficher
						<u> </u>	
	Nombre de tira	des	1e6	Lancer	E4 No	mbre de tirages à ajouter	1 Relancer
	NUTIDIE de lita						

INE-MCM : Test de Kolmogorov-Smirnov

Test d'adéquation de Kolmogorov-Smirnov

Grandeur de sortie dm

	Loi	p-value	statistique de test		Paramètre 1		Paramètre 2		Paramètre 3
1	Normale	< 1e-6	0.0050	Moyenne	1.2340e-06	Ecart type	7.5481e-08		
2	Student	< 1e-6	0.0142	Shift	1.2340e-06	Scale	7.4905e-08	ddl	10
3	Log-normale	< 1e-6	0.0150	Moyenne	-13.6071	Ecart type	0.0615		
4	Gamma	< 1e-6	0.0343	К	20.3692	Thêta	1.7372e-08		
5	Bêta	< 1e-6	0.2580	Alpha	2.1082	Bêta	2.5924		
6	Uniforme	< 1e-6	0.2911	Borne inf	8.8015e-07	Borne sup	1.6061e-06		
7	Exponentielle	< 1e-6	0.4272	Lambda	2.8260e+06				

PRACTICAL TOOLS 2

The NIST uncertainty machine

https://uncertainty.nist.gov/

VERSION 1.3.5

NIST UNCERTAINTY MACHINE

NIST Uncertainty Machine — User's Manual

Thomas Lafarge Antonio Possolo

Statistical Engineering Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, Maryland, USA

March 10, 2018

1 NIST Uncertainty Machine for the Impatient

- Using a Web browser, visit https://uncertainty.nist.gov/.
- Choose the number of input quantities from the drop-down menu, and give them names if desired.
- Select a probability distribution for each of the input quantities, and enter values for its parameters (in the absence of cogent reason to do otherwise, assign Gaussian distributions to the input quantities, with means equal to estimates of their values, and standard deviations equal to their standard uncertainties);
- Specify the size of the Monte Carlo sample to be drawn from the probability distribution of the output quantity (no larger than 5 000 000).
- Enter one or more valid R expressions (one per line) into the box labeled Value of output quantity (R expression) such that the last line evaluates to f(x1,...,xn), the right-hand side of the measurement equation. (Refer to (U-8) on Page 11 for the case when the output quantity is a vector.)
- If there are correlations between the input quantities, then check the box marked **Correlations**, enter the values of the non-zero correlations, and select a copula to apply them with (*cf.* Figure 6 on Page 26).
- Click the button labeled Run the computation.

User's manual available here. Load examples Instructions :

- Select the number of input quantities.
 Change the quantity names if necessary.
 For each input quantity choose its distribution and its parameters.
 Choose the number of realizations.
- Write the definition of the output quantity in a valid R expression.
 Choose and set the correlations if necessary.
- Run the computation.

Random number generator seed: 90

6	 						-		-		-					-	-		-	-	-
1	D	ror	o co	onf	fia	ura	ati	on	fi	le	he	ere	e o	or	cli	cł	ct	0			
- 1					.9		U	Iqi	08	d											
-	 										-		-			-			-	-	-

Reset

Number of input quantities: 1 • Names of input quantities: x0

x0 Gaussian (Mean, StdDev)		• 0	1	
Number of realizations of the output quantity	/: 1000000]	
Definition of output quantity (R expression): Symmetrical coverage intervals Correlations 	x0			+

Run the computation

Cea

User's manual available here. Load examples Instructions :		
 Select the number of input quantities. Change the quantity names and update them if necessar For each input quantity choose its distribution and its particle of realizations. Write the definition of the output quantity in a valid R ere Choose and set the correlations if necessary. Run the computation. Random number generator seed: 5 Number of input quantities: 3	y. arameters. expression.	Drop configuration file here or click to upload
a b c		
a Gaussian (Mean, StdDev)	▼ 32	0.5
b Uniform (Mean, StdDev)	▼ 0.9	0.025
c Triangular Symmetric (Mean, StdDev)	▼ 1	0.3
Number of realizations of the output quantity: 1000000 a*b/c		
Symmetrical coverage intervals Correlations		
Run the computation		

OUTPUT

NIST Uncertainty Machine

RESULTS

Monte Carlo Method

Summary statistics for sample of size 1000000

ave = 32.2 sd = 13 median = 28.8 mad = 8.9

Coverage intervals

99%	(17.1,	85)	k		2.7
95%	(18.2,	67)	k	-	2
90%	(19.1,	57.9)	k		1.6
68%	(21.8,	42.4)	k	-	0.82

ANOVA (% Contributions)

	w/out	Residual	w/	Residual
a		0.22		0.18
b		0.62		0.52
c		99.16		81.89
Residual		NA		17.42

.....

Gauss's Formula (GUM's Linear Approximation)

y = 28.8 u(y) = 8.7

Sensi	tivityCoeffs	Percent.u2
a	0.9	0.27
b	32.0	0.85
c	-29.0	99.00
Correlations	NA	0.00

Download binary R data file with Monte Carlo values of output quantity Download a text file with Monte Carlo values of output quantity Download text file with numerical results shown on this page Download JPEG file with plot shown on this page Download configuration file

NIST Uncertainty Machine

User's manual available here. Load examples

Instructions :

- · Select the number of input quantities.
- Change the quantity names if necessary.
 For each input quantity choose its distribution and its parameters.
- · Choose the number of realizations.
- Write the definition of the output quantity in a valid R expression.
 Choose and set the correlations if necessary.

Reset
3
- +

Run the computation

	Drop configuration file here or click to					
upload						

NIST Uncertainty Machine

===== RESULTS =============================

Monte Carlo Method

Summary statistics for sample of size 1000000

ave = 0.001 sd = 1.3 median = -3e-05 mad = 0.72

Coverage intervals

99% (-4.4,	4.4)	k =	3.4
95% (-2.5,	2.5)	k =	1.9
90% (-1.8,	1.8)	k =	1.4
68% (-0.86,	0.86)	k =	0.67

ANOVA (% Contributions)

	w/out	Residual	w/	Residual
x0		0.08		0.02
x1		99.92		19.99
Residual		NA		80.00

Gauss's Formula (GUM's Linear Approximation)

У	=	0
u(y)	=	0.58

	SensitivityCoeffs	Percent.u2
xØ	0	0
x1	1	100
Correlations	NA	0

Download binary R data file with Monte Carlo values of output quantity Download a text file with Monte Carlo values of output quantity Download text file with numerical results shown on this page Download JPEG file with plot shown on this page Download configuration file

PRACTICAL CONSIDERATIONS

Do not start with a brute force approach: sometimes it is not necessary to vary all the input quantities, but only those which could have a significant influence on the result A preliminary calculation with extreme values, or a physical evaluation, can indicate the main input quantities to consider

Example, parameter α :

Make two calculations with α_{min} and α_{max} (keeping constant the other input data). If the difference is small (versus the target uncertainty) it is not useful to vary α in the Monte Carlo process

Application to measurements with no explicit transfer function

Example : activity measurement of ⁵⁵Fe with the TDCR method in LSC

EXAMPLE OF A NUMERICAL MODEL

$$\frac{R_T}{R_{AB}} = \frac{\int_{spectrum} S(E)(1-e^{-\eta_A})(1-e^{-\eta_B})(1-e^{-\eta_C}) dE}{\int_{spectrum} S(E)(1-e^{-\eta_A})(1-e^{-\eta_B})dE}$$
with

$$\frac{R_T}{R_{BC}} = \frac{\int_{spectrum} S(E)(1-e^{-\eta_A})(1-e^{-\eta_B})(1-e^{-\eta_C}) dE}{\int_{spectrum} S(E)(1-e^{-\eta_A})(1-e^{-\eta_C}) dE}$$
 $\eta_A = \frac{V_A}{3} \int_0^E \frac{AdE}{1+kB\frac{dE}{dx}}$

$$\frac{R_T}{R_{AC}} = \frac{\int_{spectrum} S(E)(1-e^{-\eta_A})(1-e^{-\eta_B})(1-e^{-\eta_C}) dE}{\int_{spectrum} S(E)(1-e^{-\eta_A})(1-e^{-\eta_C}) dE}$$

Solution: minimization of

$$\left(\frac{T_{exp}}{AB_{exp}} - \frac{T_{calc}}{AB_{calc}}\right)^{2} + \left(\frac{T_{exp}}{BC_{exp}} - \frac{T_{calc}}{BC_{calc}}\right)^{2} + \left(\frac{T_{exp}}{AC_{exp}} - \frac{T_{calc}}{AC_{calc}}\right)^{2}$$

e.g. with the "downhill simplex" algorithm

 \mathbf{i}

UNCERTAINTY DETERMINATION

Evaluation of the input quantities: same as the conventional GUM approach

Variance propagation?

- 1st option: numerical evaluation of partial derivatives
- 2nd option: Monte Carlo method

The 2nd option is by far quicker and more exact

EXAMPLE OF ⁵⁵FE

Activity A=N/R

The counting uncertainty is negligible vs. the detection efficiency uncertainty

This simplifies the problem, as with this method N and R are correlated

Sometimes, there is no real reason to choose one articular *pdf* for the input quantities, and several choices are possible (e.g. if the minimum and maximum values of a parameter are known, several interpretations are possible:

- With no other information: uniform *pdf*
- If the mean value is more probable: triangular or Gaussian *pdfs*

Here, test with 2 different *pdf*s: Gaussian or uniform

GAUSSIAN FLUCTUATIONS OF THE INPUT QUANTITIES

UNIFORM FLUCTUATIONS OF THE INPUT QUANTITIES

ε_D=0.5222 (12)

COMMENTS

For ⁵⁵Fe *a posteriori* analysis shows that there are 2 dominant factors in the uncertainty budget

Consequences:

- uniform *pdf* _____ triangular *pdf*
- Gaussian *pdf* _____ Gaussian *pdf*
- •The transfer function induces the convolution of the pdfs of the input quantities

Thus, the pdf of the result is the consequence of the pdfs of the input quantities

Some statisticians would try to convince us that there is an univocal choice of the pdfs, thus that the pdf of the result is objective and that there is no uncertainty of the uncertainty...

My personal opinion (you could disagree) is that there is some subjectivity in this choice, and what you get from the Monte Carlo method is only a result of your hypothesis on the pdfs

CONCLUSIONS

The Monte Carlo method given in the supplement 1 of the GUM is a very powerful and simple tool to propagate uncertainties, especially when the measurement function is complex or non-analytical. In the latter case, this is the only possible method

Advantages of this method:

- Calculation algorithms are simple and explicit and can be easily incorporated in the codes used for the calculation of the measurement result
- This method overcomes the limitation of the usual formula of propagation of variances: some parameters could have a dominant influence on the uncertainty and the measurement model could be non-linear, discontinuous, non-analytical, non-derivable

But:

- The evaluation of the values and pdfs of the input quantities remain the biggest challenge and some simplifications can be necessary
- The *pdf* of the result is just a consequence of the *pdfs* of the input quantities, or an illustration of the central limit theorem!

Perspectives (personal view)

The GUM framework is a sound approach to the determination of uncertainties. The supplement 1 gives a powerful tool in most cases

I am not convinced that the determination of the pdf of the result gives much more information than an expression of the result as a mean value and associated standard deviation, except if confidence intervals have to be evaluated

There is a real risk that some Bayesian extremists will use this approach to redefine the measurement result as a *pdf* and not only from its mean value and uncertainty. In my opinion, this could ruin more than 20 years of effort in the rationalization of uncertainty determination in the field of metrology

Thank you for your attention