Meeting of the ICRM Gamma Spectrometry Working Group October 29-30, 2020

Tran Thien Thanh, Le Hoang Minh, Chau Thanh Tai, Phan Long Ho, Chau Van Tao VNUHCM-University of Science

Ho Chi Minh City, 30-10-2020

ICRM GSWG

✓ Introduction

Monte Carlo simulation

Results and discussions

Conclusions

Introduction

- Gamma ray spectrometry: detection efficiency calibration, radionuclide activity, and gamma emission intensity.

- However, ANSI N42.14-1999 shows that:

Introduction (cont)

- The goal of this work validated the coincidence summing correction factor by Monte Carlo method.
 - MCNP-CP (<u>Monte</u> <u>Carlo</u> <u>N-Particle</u> version 6 with <u>Correlated nuclear</u> <u>Particles version</u> 3.2)
 - PENNUC (PENELOPE2014 and NUCLEIDE?)
 - Geometrical parameters for the simulation are based on the benchmark geometry of **ICRM GSWG web page**

Benchmark files

The ICRM GSWG participants contributed to prepare benchmark files specific to four different MC codes (EGSnrc, GEANT4, MCNP and PENELOPE). Two cases have to be considered since GEANT4, which is object-oriented and run under UNIX, must be compiled including the geometry, while the other code are written in FORTRAN and run with an external geometry file.

MONTE CARLO SIMULATION

*MCNP-CP and PENNUC codes simulate decay scheme of radionuclides.

Energy: 1keV – 3000keV

Channel: 1000

♦ NPS: 1E7

Cutoff: photon (1keV), and electron (1keV)

Monte Carlo simulation

ICRM GSWG

PR = 9.998260E-0

0 GAMMA , E = 1.332492E+06 eV,

***** Data for <u>MCNP-CP (ENSDF)</u> and <u>PENNUC (NUCLIDE)</u>

<u> </u>								>
Pro	perties of	electr	omagnet	ic transitic	ons	Transitions from level 3		
Tra ##	nsition E,keV	Level init	indexe -> fi	s Multip n ENSDF2	olarity Taken as	Mixing ratio	Gammas *	3> 0 ICL1 , E = 2.504836E+06 eV, PR = 1.520000E-13 3> 0 ICK , E = 2.497415E+06 eV, PR = 1.560000E-12 3> 0 GAMMA , E = 2.505692E+06 eV, PR = 2.000000E-08
1 2 3 4 5 6	1332.492 826.100 2158.570 347.140 1173.228 2505.692	2 3 4 4 4	1 2 1 3 2 1	E2 D+Q E2(+M3) E4	E2 M1 E2 E2 E2+M3 E4	0.00000 0.00000 0.00000 0.00000 -0.00250 0.00000	9.9983e+001 7.6000e-003 1.2000e-003 7.5000e-003 9.9850e+001 2.0000e-006	3> 1 ICL1 , E = 1.172328E+06 eV, PR = 1.478000E-05 3> 1 ICK , E = 1.164907E+06 eV, PR = 1.510000E-04 3> 1 GAMMA , E = 1.173228E+06 eV, PR = 9.985000E-01 3> 2 ICL1 , E = 3.462300E+05 eV, PR = 3.770000E-08 3> 2 ICK , E = 3.388100E+05 eV, PR = 3.740000E-07 3> 2 GAMMA , E = 3.471400E+05 eV, PR = 7.500000E-05
*] Tru	* Intensities per 100 decays of a parent nucleus. True gamma-gamma coincidence table*.							Transitions from level 2 2> 0 ICL1 , E = 2.157698E+06 eV, PR = 5.200000E-11 2> 0 ICK , E = 2.150277E+06 eV, PR = 5.300000E-10
## 1	E, keV	Ten 1332.	the m .51 8	ost intens 26.10 2158	se coincio 3.61	ding gamma	-rays, keV	2> 0 GAMMA , E = 2.158570E+06 eV, PR = 1.200000E-05 2> 1 ICL1 , E = 8.251880E+05 eV, PR = 2.210000E-09 2> 1 ICK , E = 8.177670E+05 eV, PR = 2.280000E-08
2 3 4 5	826.10 1173.24 1332.51 2158.61	1332. 1332. 1173. 347.	.51 3 .51 .24 8	47.14 26.10 347	7.14			2> 1 GAMMA , E = 8.261000E+05 eV, PR = 7.600000E-05 Transitions from level 1
6	2505.75	*** 5	single	gamma-ray	, ***			1> 0 ICL1 , E = 1.331596E+06 eV, PR = 1.130000E-05

500.000 ns resolution time was assumed.

Monte Carlo simulation

Na-22 511 180.7 Na-22 1274 99.944 99.94 0.00 Cs-134 K alpha 32 keV 0.4451 0.438 1.60 Cs-134 K beta 36 keV 0.08051 0.129 60.10 Ra-133 K alpha 30 keV 70.38 62.400 11.34 Ba-133 K beta 35 keV 12.61 18.240 44.65 Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 2204.21 5.08 4.913 3.29 Bi-214 1729.6 2.92 2.844 2.60	Radionuclide	Energy (keV)	I(I	E) (%)	Relative deviation (%)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ENSDF	NUCLIDE		
Na-22 1274 99.944 99.94 0.00 Cs-134 K alpha 32 keV 0.4451 0.438 1.60 Cs-134 K beta 36 keV 0.08051 0.129 60.10 Cs-134 K beta 36 keV 0.08051 0.129 60.10 Cs-134 475 1.486 1.479 0.47 Ba-133 K alpha 30 keV 70.38 62.400 11.34 Ba-133 K beta 35 keV 12.61 18.240 44.65 Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 1729.6 2.92 2.844 2.60	Na-22	511		<u>180.7</u>		
Cs-134 K alpha 32 keV 0.4451 0.438 1.60 Cs-134 K beta 36 keV 0.08051 0.129 60.10 60.10 Cs-134 475 1.486 1.479 0.47 60.47 Ba-133 K alpha 30 keV 70.38 62.400 11.34 144.65 Ba-133 K beta 35 keV 12.61 18.240 44.65 2.02 Ba-133 79-80 36.68 35.940 2.02 609.31 Bi-214 609.31 46.1 45.490 1.32 Bi-214 2204.21 5.08 4.913 3.29 Bi-214 1729.6 2.92 2.844 2.60	Na-22	1274	99.944	99.94	0.00	
Cs-134 K alpha 32 keV 0.4451 0.438 1.60 Cs-134 K beta 36 keV 0.08051 0.129 60.10 60.17 60.17 60.17 60.17 60.17 60.11 6						
Cs-134 K beta 36 keV 0.08051 0.129 60.10 Cs-134 475 1.486 1.479 0.47 Ba-133 K alpha 30 keV 70.38 62.400 11.34 Ba-133 K beta 35 keV 12.61 18.240 44.65 Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 1729.6 2.92 2.844 2.60	Cs-134	K alpha 32 keV	0.4451	0.438	1.60	
Cs-134 475 1.486 1.479 0.47 Ba-133 K alpha 30 keV 70.38 62.400 11.34 Ba-133 K beta 35 keV 12.61 18.240 44.65 Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 2204.21 5.08 4.913 3.29 Bi-214 1729.6 2.92 2.844 2.60	Cs-134	K beta 36 keV	0.08051	0.129	<u>60.10</u>	
Ba-133 K alpha 30 keV 70.38 62.400 11.34 Ba-133 K beta 35 keV 12.61 18.240 44.65 Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 2204.21 5.08 4.913 3.29 Bi-214 1729.6 2.92 2.844 2.60	Cs-134	475	1.486	1.479	0.47	
Ba-133 K alpha 30 keV 70.38 62.400 11.34 Ba-133 K beta 35 keV 12.61 18.240 44.65 Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 2204.21 5.08 4.913 3.29 Bi-214 1729.6 2.92 2.844 2.60						
Ba-133K beta 35 keV12.6118.24044.65Ba-13379-8036.6835.9402.02Bi-214609.3146.145.4901.32Bi-214934.063.033.1002.31Bi-2142204.215.084.9133.29Bi-2141729.62.922.8442.60	Ba-133	K alpha 30 keV	70.38	62.400	11.34	
Ba-133 79-80 36.68 35.940 2.02 Bi-214 609.31 46.1 45.490 1.32 Bi-214 934.06 3.03 3.100 2.31 Bi-214 2204.21 5.08 4.913 3.29 Bi-214 1729.6 2.92 2.844 2.60	Ba-133	K beta 35 keV	12.61	18.240	<u>44.65</u>	
Bi-214609.3146.145.4901.32Bi-214934.063.033.1002.31Bi-2142204.215.084.9133.29Bi-2141729.62.922.8442.60	Ba-133	79-80	36.68	35.940	2.02	
Bi-214609.3146.145.4901.32Bi-214934.063.033.1002.31Bi-2142204.215.084.9133.29Bi-2141729.62.922.8442.60						
Bi-214934.063.033.1002.31Bi-2142204.215.084.9133.29Bi-2141729.62.922.8442.60	Bi-214	609.31	46.1	45.490	1.32	
Bi-2142204.215.084.9133.29Bi-2141729.62.922.8442.60	Bi-214	934.06	3.03	3.100	2.31	
Bi-214 1729.6 2.92 2.844 2.60	Bi-214	2204.21	5.08	4.913	3.29	
	Bi-214	1729.6	2.92	2.844	2.60	

• The discrepancies are only in X-ray regions. The maximum relative deviation of intensities is 60%.

• The t-test shows that was not statistically significant (p = 0.67)

Monte Carlo simulation

MCNP plotPENELOPE plotFigure 1: Geometrical plot for detector A with soil sample

Comparison of MCNP-CP and PENNUC codes

Figure 2: The simulated spectra are with (black line-point) and with out (red line) coincidence summing mode for Co-60.

The coincidence summing factor (CSF) is a ratio of FEP efficiencies.

MCNP-CP code has gamma-gamma angular correlations.

In PENNUC code, ACs are disregarded.

The good agreement between both codes for gamma-gamma coincidence summing factors.

- (1							
E(keV)	Detector	Source	MCNP-CP	Unc (%)	PENNUC	Unc (%)	Ratio (M/P)
	٨	Point	1.219	0.23	1.213	0.22	1.00
		Water	1.085	0.43	1.074	0.43	1.01
	A	Filter	1.136	0.29	1.135	0.30	1.00
1172		Soil	1.126	0.33	1.112	0.88	1.01
11/5		Point	1.252	0.21	1.246	0.21	1.00
	D	Water	1.086	0.39	1.084	0.39	1.00
	D	Filter	1.150	0.27	1.157	0.27	0.99
		Soil	1.129	0.30	1.136	0.79	0.99
		Point	1.230	0.24	1.226	0.24	1.00
	^	Water	1.087	0.45	1.082	0.45	1.00
	A	Filter	1.145	0.31	1.139	0.31	1.01
1222		Soil	1.126	0.35	1.124	0.93	1.00
1332		Point	1.259	0.23	1.252	0.22	1.01
	D	Water	1.092	0.42	1.095	0.41	1.00
	D	Filter	1.154	0.28	1.159	0.29	1.00
		Soil	1.140	0.32	1.151	0.83	0.99

E(keV)	Detector	Source	MCNP-CP	Unc (%)	PENNUC	Unc (%)	Ratio (M/P)
		Point	1.219	0.20	1.224	0.18	1.00
	٨	Water	1.081	0.24	1.085	0.24	1.00
	A	Filter	1.132	0.16	1.139	0.16	0.99
F11		Soil	1.120	0.17	1.118	0.46	1.00
511		Point	1.254	0.18	1.250	0.17	1.00
	P	Water	1.092	0.22	1.099	0.22	0.99
	В	Filter	1.153	0.15	1.158	0.14	1.00
		Soil	1.133	0.16	1.132	0.41	1.00
		Point	1.176	0.23	1.208	0.23	0.97
	•	Water	1.186	0.45	1.200	0.45	0.99
	A	Filter	1.294	0.32	1.348	0.32	0.96
1074		Soil	1.310	0.35	1.314	0.93	1.00
1274		Point	1.202	0.21	1.245	0.22	0.97
	5	Water	1.227	0.42	1.220	0.42	1.01
	В	Filter	1.354	0.29	1.413	0.30	0.96
		Soil	1.355	0.33	1.343	0.84	1.01

Results and discussions									
E(keV)	Detector	Source	MCNP-CP	Unc (%)	PENNUC	Unc (%)	Ratio (M/P)		
		Point	1.066	1.17	1.071	1.14	1.00		
	٨	Water	1.060	2.16	1.048	2.12	1.01		
	A	Filter	1.053	1.59	1.088	1.84	0.97		
20.0		Soil	1.027	1.65	1.059	1.64	0.97		
30.9		Point	1.832	0.09	1.823	0.10	1.00		
	D	Water	1.279	0.20	1.279	0.20	1.00		
	В	Filter	1.468	0.12	1.468	0.13	1.00		
		Soil	1.413	0.19	1.411	0.20	1.00		
		Point	1.094	1.14	1.095	1.13	1.00		
	А	Water	1.014	2.11	1.018	2.11	1.00		
		Filter	1.059	1.55	1.041	1.83	1.02		
25		Soil	1.078	1.61	1.043	1.61	1.03		
35		Point	1.812	0.20	1.795	0.21	1.01		
	D	Water	1.266	0.41	1.275	0.43	0.99		
	D	Filter	1.450	0.26	1.455	0.26	1.00		
		Soil	1.378	0.35	1.374	0.37	1.00		
		Point	1.195	0.99	1.126	0.99	1.06		
	Δ	Water	1.045	1.72	1.043	1.72	1.00		
	A	Filter	1.085	1.33	1.126	1.54	0.96		
F2 1		Soil	1.086	1.33	1.104	1.33	0.98		
JJ.T		Point	1.710	0.56	1.573	0.55	1.09		
	B	Water	1.204	0.92	1.178	0.91	1.02		
	D	Filter	1.393	0.70	1.357	0.69	1.03		
		Soil	1.309	0.77	1.276	0.76	1.03		

E(keV)	Detector	Source	MCNP-CP	Unc (%)	PENNUC	Unc (%)	Ratio (M/P)
		Point	1.344	1.21	1.367	1.20	0.98
	٨	Water	1.114	2.02	1.128	2.01	0.99
	A	Filter	1.215	1.58	1.228	1.70	0.99
22.1		Soil	1.170	1.58	1.187	1.58	0.99
32.1		Point	1.419	1.14	1.442	1.15	0.98
	D	Water	1.138	1.75	1.154	1.77	0.99
	D	Filter	1.258	1.47	1.234	1.54	1.02
		Soil	1.227	1.45	1.188	1.45	1.03
		Point	1.372	1.21	1.363	1.20	1.01
	٨	Water	1.126	2.02	1.061	1.99	1.06
	A	Filter	1.214	1.58	1.196	1.69	1.02
		Soil	1.220	1.58	1.174	1.58	1.04
30.0		Point	1.410	1.05	1.421	1.06	0.99
	D	Water	1.148	1.77	1.103	1.76	1.04
	D	Filter	1.244	1.36	1.229	1.43	1.01
		Soil	1.217	1.40	1.198	1.41	1 02

***** The <u>maximum relative deviation</u> is about 9%.

- * The T-test was used for evaluating CSF taking into account from MCNP-CP and PENNUC codes.
- There were not statistically significant for Co-60, Cs-134, and Bi-214 (p value > 0.05)
- However, the results showed that there were differences in the CSF values of <u>Ba-133 and Na-22</u> <u>between the MCNP-CP and PENNUC</u> data (The p-value of the mean comparison tests is significant with p < 0.05).</p>

- Good agreement of response functions of the dectector.
- Good agreement between two codes for calculating CSF.
- **Gamma-gamma angular correlations**.
- Decay data parameters especially for X-ray regions.

CẢM ƠN - THANK YOU – MERCI

Questions or comments?

10/30/2020

References

1. Berlizov, A., 2012. A correlated particle source extension of a general purpose Monte Carlo N-particle transport code, MCNP-CP Upgrade Patch Version 3.2. Institute for Nuclear Research National Academy of Sciences of Ukraine

2. Pelowitz, D.B., (Ed). 2013. MCNP6TM user's manual, Version 1.0. Los Alamos National Laboratory report LA-CP-13-00634, Rev 0

3. García-Toraño, E., Peyres, V., Bé, M.M., b , C. Dulieu, C., Lépy, M.C., b , Salvat, F., 2017, Simulation of decay processes and radiation transport times in radioactivity measurements, Nuclear Instruments and Methods in Physics Research B, 397, 43-49.

4. García-Toraño, E., Peyres, V., F. Salvat, F., 2019, PenNuc: Monte Carlo simulation of the decay of radionuclides, Computer Physics Communications, 245, 106849.

5. American National Standard for Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emission Rates of Radionuclides. 1999, American National Standards Institute.

6. Lépy, M.C., Pearce, A., Sima, O., 2015. Uncertainties in gamma-ray spectrometry, Metrologia, 52, S123–S145.