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Detector efficiency

• Full energy peak efficiency

– Definition

– Experimental calibration

– Curve fitting

• Total efficiency

– Definition

– Experimental calibration

• Monte Carlo simulation



FULL ENERGY PEAK EFFICIENCY



Ratio of the number of counts in full-energy peak corresponding

to energy E (NP(E)), by the number of photons with energy E

emited by the source (F(E))

εP(E) depends on the source-detector geometry

and on the energy

Full-energy Peak Efficiency (FEPE): εP(E)
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εp(E) depends on the geometrical conditions  and on the energy

Measurement

conditions
Detector 

characteristics

εP(E) = εG
. εI(E)

Geometrical

efficiency

Intrinsic

efficiency

Sample

Distance

Shielding

Full-energy Peak Efficiency (FEPE): εP(E)



Geometrical efficiency
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εG depends only on the source-detector geometry

Ratio of the number of photons emitted towards the detector 

by the number of photons emited by the source



εI(E) depends on the energy of the 

incident photons:

transmission

absorption

full-energy deposition

εI(E) = Ratio of the number of counts in 

full-energy peak by the number of 
impiging photons

Difficulty: exact composition badly known
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Transmission probability through material i 

with thickness xi : (Beer-Lambert law) :

Thus

Interaction probability in the same material:

PT (E, xi) = exp (-µi(E) . xi)

PI (E, xi) = 1 - PT(E, xi) 

Calculation of the detector FEP efficiency

To result in a count in the FEP peak:

The photon must : 

- be emitted in the Ω solid angle,

- cross the screens (air,n window, dead layer,…) 
without being absorbed, 

- and be totally absorbed in the detector active 
volume.

GeHP

Ω

Source



Transmission

through screens

Interaction in the

detectorr volume
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For the low-energy range:

Probability of total 
absorption in the detector

For higher energies: 

Total absorption is due to succesive effects : multiple scattering

Thus the calcul is not possible

Pp(E) ≈ τd(E)/µd(E)

Calculation of the detector efficiency



Many difficulties for an accurate calculation

Radiography of a HPGe detector:

Rounded crystal, axially shifted, tilted …

- Exact knowledge of the detector parameters:

materials (composition)

geometry (thickness, position …)

- Data used in the calculation :

Attenuation coefficients 

Material density

- Semi-conductor effects: parameters and physical

interaction :

Electrical field

Electrodes

Calculation of the detector efficiency



Experimental FEP efficiency calibration

This is performed using standard radionuclides with standardized activity A (Bq) with

photon emission intensities, Iγ well known

NP(E) : peak net area
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εP(E)  Full-energy peak (FEP) efficiency depends on the energy and 

on the source-detector geometrical arrrangement
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Associated standard uncertainty
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Influence of the peak area : 

if N = 104 ∆N/N = 10-2 ->   ∆ε/ε = 1,1 10-2

if N = 105 ∆N/N = 3,1 10-3 ->   ∆ε/ε = 6 10-3



FEP efficiency calibration
To get an efficiency values at any energy : energy calibration over the whole

energy range  

1. Use different radionuclides to get energies regularly spaced over the range of 
interest

Single gamma-ray emitters : 51Cr (320 keV), 137Cs (662 keV) 
54Mn (834 keV) : one efficiency value per one measurement

Multigamma emitters : 60Co, 133Ba, 152Eu, 56Co : several efficiencies values per one 

measurement , but coincidence summing effects ! 

For each energy, discrete values of the FEP efficiency ε(E1), ε(E2), … ε (En)

2. Computation of the efficiency for 

1. Local interpolation

2. Fitting a mathematical function to the experimental values

!



Efficiency calibration for different source-to-detector distances
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FEP efficiency calibration



Efficiency calibration - Interpolation

Local interpolation

E1 -> ε1

E2 -> ε2

To get ε(E)  for E1 < E  < E2

Solution 1 : linear interpolation )(
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Solution 2 : logarithmic interpolation 

: valid only for close energies!
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Efficiency calibration - Interpolation
Local interpolation : example

Actual value (at 662  keV) : ε(E) = 1.90 10-3

Conclusion : approximation to be used only if high uncertainties (> 10 %) 
are acceptable

Determine efficiency for E = 662 keV (137Cs)  knowing : 

1.    E1 = 569 keV  (134Cs)     ε1 = 2.21 10-3

E2 = 766 keV  (95Nb)      ε2 = 1.67 10-3

Linear interpolation : ε(E) = 1.96 10-3

Logarithmic interpolation : ε(E) = 1.92 10-3

2. E1 = 122 keV (57Co)     ε1 = 8.22 10-3

E2 = 1 173 keV (60Co)    ε2 = 1.13 10-3

LInear interpolation : ε(E) = 4.57 10-3 

Logarithmic interpolation :  ε (E) = 1.87 10-3



Determination of the best fitted function to a given set of experimental data 
(energy, efficiency)

In the logarithmic scale , the shape is smoother than in the linear scale. 

Efficiency calibration : mathematical fitting (1)

Experimental efficiency calibration of a 

HPGe detector (100 cm
3
) for a point source 

at 12 cm between 10 and  1500 keV (linear scale)
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Experimental efficiency calibration of a

HPGe detector (100 cm
3
) for a point source 

at 12 cm between 10 and 1500 keV (logarithmic scale)
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Functions frequently used:

Polynomial fitting in the log-log scale: 
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Efficiency calibration : mathematical fitting

Remarks : 

-ai coefficients are determined using a least-squares fitting method

- experimental data must be weighted 

- the polynomial degree (n) must be adjusted depending on the number of 
experimental data (p) : n << p

- in some case two different functions can be used with a cross point

- check the resulting fitted curves ! 



Efficiency calibration : mathematical fitting

Example : 40 experimental values 

in the 122-to-1836 keV range

Fitting function :

Adjusted coefficients : 
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fitting 122 to 1836 keV

deg0 -34,11961

deg1 48,16797

deg2 -25,89215

deg3 5,80219

deg4 -0,40503

deg5 -0,01632



Efficiency fitting must be

visually checked

Efficiency calibration : mathematical fitting



In the case 
of cross 

points 
be carefull :
- Avoid
zones with

important 
inflexion 
- Avoid high
degree
polynomials



Spline functions

� Simply a curve

� Special function defined piecewise by polynomials 

� A piecewise polynomial f(x) is obtained by dividing of X into 
contiguous intervals, and representing f(x) by a separate 
polynomial in each interval

� The polynomials are joined together at the interval endpoints 
(knots) in such a way that a certain degree of smoothness of 
the resulting function is guaranteed

Slides from Dr. Oliver Ott - PTB



Piecewise defined polynomials

constraints

K1 ≤ xmin < K2 < … < Kk < xmax < Kk+1

Series of knots

xmin: minimum x-value of the data points

xmax: maximum x-value of the data points

{Ki } ( i = 1, …, k+1)

• 2 consecutive knots establish an interval [Ki, Ki+1) where a polynomial Pi(x) of order 
n (degree n-1) is defined. 

• In total k intervals are fixed by the knots.

• Outside the interval i  the polynomial Pi(x) is not defined. 

• At the joining points K2 …Kk they have to fit smoothly – continous up to the (n-2) 
derivative



Spline functions mathematically

Condition that a spline function solution must satisfy:

For the derivatons of neighboured polynomials at all knots: 
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Efficiency calibration at 25 cm



Efficiency calibration at 10 cm

Multigamma emitters -> Coincidence summing effets 



• Efficiency calibration for reference geometry

– For point source : relative uncertainty 1-2 %

• Corrective factors needed if different
measurement geometry

FEP Efficiency calibration : remarks



TOTAL EFFICIENCY



Ratio of the total number of counts in the spectrum (NT(E)), by the

number of photons with energy E emitted by the source (F(E))

εT(E) depends on the source-detector geometry

and on the energy

Total Efficiency (TE): εT(E)
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( )( ) ( ) Ω⋅⋅−−⋅⋅−= ∫∏
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xi : i shield thickness

xd : detector thickness

Total efficiency depends on:

- Solid angle Ω

- Attenuations in absorbing layers (air, window, dead layer, etc)

- Interaction in the detector active volume (any effect)

And on the environment ! (scattering) 

where

Attenuation in screens Detector interaction

Calculation of the total efficiency



Experimental total efficiency calibration εT(E)
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1. Using mono-energetic radionuclides

241Am (60 keV), 109Cd (88 keV), 139Ce (166 keV-T1/2=138 d), 
51Cr (320 keV- T1/2= 28d), 

85Sr (514 keV- T1/2=65 j), 
137Cs (662 keV), 54Mn (834 keV - T1/2=302 d)

2. For the low-energy range, if P-type detector, 57Co can be used 
(mean energy and sum of emission intensities)

3. For the high energy range, 88Y and 60Co can be used
... But complex decay scheme 

Experimental total efficiency calibration εT(E)



Approximation of the total efficiency with 2-photons emitters:

NT = A (Iγ1
. εT 1 + Iγ2

. εT 2 - Ιγ1
. εT 1

. P12
. Iγ2

. εT 2)

88Y :    E1 =898 keV and E2 = 1836 keV     (or 65Zn : 511 and 1115keV)

E1 = 898 keV → εT1 can be extrapolated from previous data 

(54Mn – 834 keV)

P12 = 1
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Approximation of the  total efficiency with 2-photons emitters:

NT = A (Iγ1
. εT1 + Iγ2

. εT2 - Ιγ1
. εT1

. P12
. Iγ2

. εT2)
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εT1 ≈ εT2 = εT



• Efficiency calibration for reference geometry

– Difficult, even with point sources: 

• relative uncertainty 5-10 %

• But limited influence on the coincidence correction 
factor

• Monte Carlo simulation ?

Total Efficiency calibration : remarks



MONTE CARLO SIMULATION



Monte Carlo simulation

• Difficulties: bad knowledge of the detector internal

parameters

• Accurate description is time-consuming:

– Radiography (external dimensions)

– Collimated beam (hole - dead layer)

– Window to crystal distance (source at different distance)

– Comparison with some experimental values

• Different energies

• Different geometries



X-ray tube -> 

Geometrical dimensions

Cristal shape (rounding)

60Co source -> 

Hole dimensions



Comparison with experimental data
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Picture from V. Peyres - CIEMAT



• Can provide

– FEP efficiency

– Total efficiency (very dependent on the 

environment)

– Absolute calculation should be compared with

accurate experimental data

– Strong interest for efficiency transfer calculation

Monte Carlo simulation


