DE LA RECHERCHE À L'INDUSTRIE

Dosimétrie des réacteurs : Mesures de dosimètres par spectrométrie gamma et X

www.cea.fr

JU LNHB 16-17 Mars 2017
Christophe DOMERGUE (DER/SPEx/LDCI)

1 – La dosimétrie en réacteur

- 1.1 Objectifs et applications
- 1.2 Surveillance du vieillissement des aciers de cuve

2 – La mesure d'activité

- 2.1 La Plate-forme MADERE
- 2.2 Les dosimètres
- 2.3 Les réactions appropriées à la dosimétrie en réacteur

3 – Les besoins de la Plate-forme MADERE

- 3.1 Mesure par spectrométrie gamma
- 3.2 Mesure par spectrométrie X

4 – Conclusion et perspectives

1. LA DOSIMÉTRIE EN RÉACTEUR 1.1 OBJECTIF, PRINCIPE ET APPLICATION

Objectifs de la dosimétrie en réacteur :

Déterminer des taux de réaction, spectres de neutron, flux et fluences neutroniques

Principe de mesure :

- Sélection d'isotopes sensibles aux neutrons d'énergie variable : thermique [réactions (n,γ) (n,f)], rapide [réactions à seuil (n,n') (n,2n) (n,p) (n,α) (n,f)] ou épithermique
- Irradiation de matériaux purs sous forme de fil, de disque ou de bande (de quelques μg à plusieurs g)
- Mesure de l'activité du radionucléide créé, émettant des photons γ ou X

Interprétation de la mesure :

- Basique : comparaison calcul-mesure de l'activité du radionucléide
- Approfondie : analyse du taux de réaction ou de la section efficace, conduisant à l'activité du radionucléide
- Sophistiquée : utilisation de plusieurs dosimètres avec des seuils de réaction complémentaires

Applications :

- o Réacteurs maquettes (EOLE, MINERVE) : caractérisation d'un spectre neutronique
- o Réacteurs d'irradiation (OSIRIS, RJH, ...) : suivi du vieillissement des matériaux
- o Réacteurs de puissance (parc EDF) : suivi de la fragilisation de la cuve sous irradiation

1.2 SURVEILLANCE DU VIEILLISSEMENT DES ACIERS DE CUVE

2. LA MESURE D'ACTIVITÉ 2.1 LA PLATE-FORME MADERE

Activités

Mesures d'activité massique (Bq/mg) sur des échantillons solides irradiés en réacteur par spectrométrie X et γ (Accréditation COFRAC essais depuis1996).

Equipements de mesures

- 3 Chaines de mesures gamma « Standard »
- 2 Chaines de mesures gamma faibles activités
- 2 Chaines de mesures X
- 2 Balances de précisions

2.2 LES DOSIMÈTRES

Réacteurs d'irradiation

cuivre

niobium

Diamètre: 0,1 mm

10 mm

Longueur: 5 mm

REP

Activation (Ø 1 mm x L 10 mm)

Fissiles (Ø 4,6 mm x H 5,0 mm)

Cobalt (AlCo)

Niobium

Nickel

Fer

Cuivre

Uranium

Neptunium

Réacteurs maquettes

2.3 RÉACTIONS APPROPRIÉES À LA DOSIMÉTRIE EN RÉACTEUR

Φ < 1MeV				
Réaction	Réponse	Période		
¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	Th + epi	2,69 j		
⁵⁹ Co(n,γ) ⁶⁰ Co	Th + epi	5,27 a		
⁵⁵ Mn(n,γ) ⁵⁶ Mn	Th + epi	2,58 h		
¹¹⁵ In(n,γ) ¹¹⁶ In ^m	Th + epi	54,60 mn		

Φ~1MeV				
Réponse	Période			
E >0,36 MeV	14,0 j	6		
E >0,6 MeV	30,04 a	0		
E >0,7 MeV	56,11 mn	4		
E >1,2 MeV	16,12 a			
E >1,3 MeV	4,49 h	•		
E >1,5 MeV	30,04 a	0		
	Réponse E >0,36 MeV E >0,6 MeV E >0,7 MeV E >1,2 MeV E >1,3 MeV	RéponsePériodeE >0,36 MeV14,0 jE >0,6 MeV30,04 aE >0,7 MeV56,11 mnE >1,2 MeV16,12 aE >1,3 MeV4,49 h		

Φ > 1MeV				
Réaction	Réponse	Période		
⁵⁸ Ni(n,p) ⁵⁸ Co	E >2,7 MeV	70,86 j		
⁶⁴ Zn(n,p) ⁶⁴ Cu	E >2,8 MeV	12,70 h		
⁵⁴ Fe(n,p) ⁵⁴ Mn	E >3,0 MeV	312,13 j		
⁴⁶ Ti(n,p) ⁴⁶ Sc	E >4,4 MeV	83,787 j		
²⁴ Mg(n,p) ²⁴ Na	E >6,1 MeV	14,96 h		
⁶³ Cu(n,α) ⁶⁰ Co	E >6,8 MeV	5,27 a		
27 Al(n, α) 24 Na	E >7,3 MeV	14,96 h		
$^{51}V(n,\alpha)^{48}Sc$	E >11,0 MeV	1,82 j		

- Spectre neutronique mal maitrisé par le calcul dans ce domaine énergétique
- Difficultés de mesures par spectrométrie gamma et X sur certains radionucléides (données nucléaires, facteurs correctifs, ...)

Améliorer la mesure / Collaboration LNHB

3 BESOINS DE LA PLATE-FORME MADERE 3.1 MESURES PAR SPECTROMÉTRIE GAMMA

Activité du Cs-137 d'un dosimètre fissile contenu dans un boitier inox irradié dans un REP EDF

$$\mathcal{A}_{i} = \frac{S_{i}}{t.\,\varepsilon_{(Ei)}.\,I_{\gamma}}.\,C_{d\acute{e}c}.\,C_{fin\,irrad}.\,C_{coin}.\,C_{auto\,abs}.\,C_{abs.boitier}C_{g\acute{e}o}.\,C_{cobalt})$$

Dosimètres fissiles

Contraintes

- Dosimètre de Np-237 et U-238 irradié en REP (entre 4 et 30 ans)
- o Forte activité en Co-60 → Géométrie de comptage éloignée
- Prise en compte de l'épaisseur des boitiers inox

10⁷ 10⁶ 10⁵ 10⁴ 10³ 10² 500 1000 1500

Amélioration nécessaire

C_{cobalt}: prise en compte du pic de simple échappement qui perturbe la mesure de Cs-137

3.1 MESURES PAR SPECTROMÉTRIE GAMMA

Besoin

Mesurer le pic 661,7 keV du Cs-137 créé dans le 107 dosimètre fissile

Problème

- Création de Co-60 à partir du boitier inox (enveloppe du dosimètre) qui perturbe la raie 661,7 104keV du Cs-137 par la raie de simple échappement du 103-1173,2 keV du Co-60 (1173,2-511 = 662,2 keV
- Jusqu'à 12 % de perturbation selon centrale

Travail réalisé

- Détermination d'un facteur correctif permettant de remonter à la surface vraie du Cs-137 corrigé de l'influence du simple échappement de la raie 1173,2 du Co-60
- Déconvolution précise avec COLEGRAM
- Etude spécifique NT/LNHB/JP/CL/03-32 de 2003
- Facteur correctif estimé est de :

$$S_{661,7} = S_{ROI} - 0.068\% \times S_{1173,2}$$
à 9,5% (k=1)

3.2 MESURES PAR SPECTROMÉTRIE X

Activité massique du Nb-93m ou du Rh-103m

$$A_{(XK)} = \frac{S_{(K)}}{t. \, \varepsilon_{(X_K)} . \, I_{(X_K)}}. \, C_{d\acute{e}c}. \, C_{fin \, irrad}. \, C_{coin(X_K)}. \, C_{auto \, att(X_K)}. \, C_{g\acute{e}o}. \, C_{Mylar(X_K)}. \, C_{fluo}. \,$$

Contraintes

- Intensités d'émissions mal connu (entre 5% et 7 % pour le Rh-103m)
- Energie des photons faibles (entre 16 keV et 22 keV) \rightarrow C_{auto att} importante (entre 20 et 50 %)
- Phénomène de fluorescence induite par les rayonnements γ
- Utilisation d'un logiciel de traitement spécifique (COLEGRAM) pour la déconvolution des pics

Améliorations nécessaires

- o Intensités d'émissions du Nb-93m et du Rh103m
- Maitrise et amélioration des incertitudes des C_{auto-att}
- Détermination et validation des corrections de Fluorescence

Co-encadrement thèse LDCI/LNHB - J. Riffaud

3.2.1 AMÉLIORATION DES INTENSITÉS D'ÉMISSION

Etat des lieux

- Nb-93m (réévalué le 04/10/2013 → écart de -5 %) :
 - $E_{XK\alpha}$: 16,6 keV; $I_{XK\alpha}$: 0,0966 ± 1,8 %
 - E_{XKB} : 18,7 keV; I_{XKb} : 0,01886 \pm 2,2 %
- Rh-103m (en cours) :
 - $E_{XK\alpha}$: 20,1 keV; $I_{XK\alpha}$: 0,0966 \pm 5,4 %
 - E_{XKB} : 22,9 keV; I_{XKb} : 0,0189 \pm 7,0 %

5 Photon Emissions

5.1 X-Ray Emissions

		Energy (keV)		Photons (per 100 disint.)		
XL	(Nb)	1,9 - 2,67		2,88 (6)		
$XK\alpha_2$ $XK\alpha_1$	(Nb) (Nb)	$\substack{16,5213 \\ 16,6152}$		3,32 (8) 6,34 (15)	}	$K\alpha$
$XK\beta_3$ $XK\beta_1$ $XK\beta_5''$	(Nb) (Nb) (Nb)	18,607 18,623 18,78	}	1,64 (4)		$K'\beta_1$
$XK\beta_2$ $XK\beta_4$	(Nb) (Nb)	18,952 18,982	}	0,246 (11)		$K'\beta_2$

Travail réalisé

- \circ Campagne de mesure sur le synchrotron SOLEIL \rightarrow Rendements de fluorescence ω du Nb et Rh
- Irradiation dans ISIS de dosimètre Rhodium pur + RhCl3→ Ix du Rh-103m (Scintillation liquide + Spectrométrie X)

Résultats

- \circ ω de fluorescence du Rh et du Nb \rightarrow présenté par J. RIFFAUD
- o Intensités d'émission du Rh-103m → en cours de traitement

Publications

- European Conference on X-Ray Spectrometry –Suede EXRS2016
- International Comitee for Radionuclide Metrology Argentine ICRM 2017

3.2.2 AMÉLIORATION DE LA CORRECTION D'AUTO-ATTÉNUATION

Besoin

 \circ Valider les corrections d'auto-atténuation avec leurs incertitudes associées pour les énergies X_K du Nb-93m et Rh-103m sur les échantillons métalliques.

Travail réalisé

- \circ Caractérisation expérimentale des coefficients d'atténuation massiques μ/ρ (SOLEIL en 2015)
- Mesure précise des épaisseurs des échantillons de rhodium (50 μm) et Niobium (20 μm)
- o Etude de 3 méthodes pour caractériser C_{auto} (analytique, ETNA et simulation Monte Carlo)

Résultats

			Travail actuel	Anciennes valeurs	Ecarts
C _{auto-attenuation}	Nb-93m (20µm)	16.6 keV	1,184 (35)	1,173	0.9 %
		18.7 keV	1,128 (34)	-	
	Rh-103m (50um)	20.1 keV	1,572 (47)	1,543 (31)	1.9 %
		22.9 keV	1,390 (42)	1,394 (28)	-0.3 %

Conclusion

- Résultats cohérents
- o Incertitude de l'ordre de 3 %

3.2.3 DÉTERMINATION DES CORRECTIONS DE FLUORESCENCE

Etat des lieux

O Sous un flux mixte \rightarrow Création de radionucléides émetteurs γ qui Neutrons Tapides en interagissant avec le dosimètre lui-même vont créer un Phénomène de fluorescence.

- Conséquence : mesure de Nb-93m qui ne provient pas de la réaction (n,n').
- Coefficient de correction déterminé en 1972
- o Impact : jusqu'à 7 % (Ta-182) de correction selon le flux de neutron

Travail réalisé

 Estimation par Simulation Geant4 des coefficients de correction de fluorescence sur les radionucléides : Ta-182, Nb-95, Nb-92m, Nb-94 et Co-60

Résultats

		Travail actuel	Valeurs 1972	Ecarts
C _{Fluo}	Nb-92m	0,00067 (4)	0,021	-99 %
	Nb-94	0,0119 (2)	0,0055	116 %
	Nb-95	0,00310 (6)	0,0033	-6,1 %
	Ta-182	0,0645 (6)	0,077	-16,2%
	Co-60	0,00821 (11)	-	-

3.2.3 DÉTERMINATION DES CORRECTIONS DE FLUORESCENCE

Résultats

- Les résultats du Nb-92m et du Nb-94 sont différents de ceux déterminés en 1972 → impact négligeable sur le résultat final.
- o Les résultats du Nb-95 et du Ta-182 sont cohérents → ~0,5 % d'écart sur le résultat final
- Le Co-60 est à prendre en compte lors des prochaines mesures
- Publication conférence ICRS13/IPSD 2016
- Cette étude montre également la création Ta-185 émetteur béta pur qui pourrait avoir un impact sur le coefficient de correction de fluorescence → en cours d'étude

4 CONCLUSION ET PERSPECTIVES

Plate-forme MADERE

- O Laboratoire de référence pour la dosimétrie en réacteur en France
- o COFRAC depuis plus de 20 ans (1996)
- o La mesure par spectrométrie X (éch. solide) appliquée aux réacteurs est complexe et spécifique
- Collaboration avec le LNHB permet d'améliorer la précision de nos résultats de mesures d'activité et participe donc à la validation des schémas de calcul neutronique des réacteurs
- Les calculs neutroniques sont de plus en plus précis → Nécessité réévaluer certaines données nucléaires (Intensité d'émission) pour améliorer les incertitudes mesures.

Avancées de la thèse

- Détermination de nouveaux facteurs correctifs de Fluorescence
- O Amélioration des données nucléaires du Rh-103m et Nb-93m (Ix du Rh-103m+ ω)
- Amélioration et validation des facteurs de corrections d'auto-atténuation
- Avancées importantes pour la mesure par spectrométrie X

Besoins non couvert

- o Sn-117m
- Mesures dans le domaine neutronique épithermique
- Un Round Robin doit être réalisé sur la mesure par spectrométrie X et γ en 2017 avec la participation du LNHB.

 JU LNHB 16-17 Mars 2017 | PAGE 15