SRT-s07 *MetroBeta* Radionuclide beta spectra metrology

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Need for and aim of the project

To reduce the uncertainty on absolute activity measurements (the becquerel) by improving knowledge of beta spectra. MetroBeta will develop a code to calculate beta spectra and will deliver metallic magnetic calorimeters capable of measuring these spectra.

Objectives

Improved absolute activity measurements for pure beta emitters – the becquerel

- Improve current predictions of beta decay spectra
- Couple beta spectra shape calculations to nuclear structure, including complete uncertainty propagation
- Develop a measurement system based on metallic magnetic calorimeters (MMCs) capable of testing these predictions
- Validate the results using other more conventional experimental techniques, e.g. Si(Li), magnetic spectrometer, and develop solid crystal scintillators
- Assess the effect of Bremsstrahlung on absolute activity measurements
- Prediction of beta spectral shapes through a validated code
- Apply this new understanding of beta spectra shapes to absolute activity measurements
 - the becquerel in order to reduce the overall uncertainty

Scientific & technical excellence

WP1: Theoretical calculations: CEA, UMCS

The three-body beta decay process generates a continuous energy spectrum, the shape of which is influenced by the nature of the transition: "allowed" or "forbidden".

WP2: Development of MMCs: PTB, CEA, UHEI

Design, fabrication and characterisation of novel Metallic Magnetic Calorimeter (MMC) detectors, optimised for high-resolution beta spectra measurements for both low (< 300 keV) and medium (< 1 MeV) beta endpoint energies

- Calculations must take into account both atomic and nuclear structure – these are under control in their respective communities, but they must be unified into a single model that accounts for the weak interaction.
- From a metrological perspective the evaluation of the uncertainties is paramount. This issue is to be addressed in the present project.
- The ultimate goal is to calculate each specific transition, particularly those of higher order, both unique and non-unique.

- Improve existing techniques for source/absorber preparation, investigate innovative techniques to improve their performance, and develop new absorber designs, e.g. bi-layer absorbers to minimise Bremsstrahlung energy losses
- Develop and construct a new MMC-based spectrometer for radionuclide metrology based on a state-of-the-art millikelvin refrigerator
- Perform beta spectra measurements of pure beta emitters, ranging in end point energy from 77 keV (Sm-151) to 710 keV (Cl-36)
- Measurements to be performed at two facilities

WP3: Measurements with other methods: IRA, CMI, Gonitec

- WP4: Comparison of calculated and measured spectra: PTB, CEA, IRA
- Links the two main parts of this project by comparing theoretical and experimental spectra □ TDCR, spectrum 1 (no exchange) ○ CN, spectrum 1 (no exchange) 39.9 • Ascertain the effect that beta spectral kBq/g *kB* = 0.0075 cm/MeV shapes have on absolute activity measurements (the becquerel) made Ξ. using LSC techniques
- Measure the cross-sections of Bremsstrahlung production for low energy electrons (< 2 MeV) and their effect on absolute activity measurements

WP5: Creating impact: CMI, CEA, PTB, UHEI, UMCS, IRA, Gonitec

- Metrology: Improved activity (becquerel) standards
- Medical: Reduced dose uncertainties
- Nuclear data: Lower uncertainties, better decay schemes
- Industry: Better knowledge of decay heating
- Economy: Lower margins, higher electricity
 - production

- Dissemination and use of results: project website, workshops, training • courses, conferences and scientific publications in peer-reviewed journals.
- Links to: IAEA, BIPM, ICRM, NMIs, OECD/NEA, fundamental neutrino physics, nuclear industry, radiation monitoring

Quality and efficiency of the project

The consortium includes the major forces in Europe in the fields of beta decay and nuclear structure theory, MMC fabrication and utilisation, and beta measurements with other techniques

Consortium

Four Technical Work Packages (Project Budget: 1.132 M€)

WP1: Theoretical calculations of beta spectra (22 pm)

WP6 Management and coordination

VF

Subatech

Potential collaborators

Ciemat

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

WP2: High-resolution beta spectrometry based on Metallic Magnetic Calorimeters (61 pm)

WP3: Measurements of beta spectra with other methods (28 pm)

WP4: Comparison and validation of measurements (16 pm)

WP5: Creating impact (12 pm)

WP6: Management (11 pm)

