

DÉTERMINATION DES INTENSITÉS D'ÉMISSION DU PB-210

Journée des utilisateurs | RODRIGUES Matias

List INTÉRÊT DES INTENSITÉS D'ÉMISSION PHOTONIQUES DU PB-210

- Pb-210 radionucléide de la chaine naturelle U-238 (Rn-222):
 - Matériau radioactive naturellement présents (NORM, environnement)
 - Technologies concentrent les matériaux radioactive naturellement présents (TENORM, industrie minière et d'extraction)

- Pb-210 un possible étalon pour:
 - Étalonnage des contrôleurs d'I-129 (Hino, 1990)
 - Rendement des spectromètres γ à basse énergie.
- Pb-210 pour la détermination de paramètres fondamentaux (FPs):
 - Rayons XL intenses entre 9-17 keV
 - Schéma de décroissance simple

JU du LNHB/LMA| Matias RODRIGUES

(Campbell 2003, Menesquen 2015)

12

universite

JU du LNHB/LMA Matias RODRIGUES

université

MESURE DE L'ACTIVITÉ MASSIQUE DE LA SOLUTION list MÈRE Ceatech

- Mesure basée sur la discrimination α/β (descente des impulsions α > impulsions β) •
- Hionic Fluor donne la meilleure discrimination •
- Incertitude due au fond provoqué par la diaphonie en voies $\alpha \beta$ •

universite

5

Equ. de Bateman :

$$\frac{A_{\rm X}}{A_{\rm Pb-210}} = k_{\rm X} = k_{\rm X-1} \left(\frac{T_{1/2}(\rm Pb-210)}{T_{1/2}(\rm Pb-210) - T_{1/2}(\rm X)} \right)$$

$$\Rightarrow k_{\rm Bi-210} = \frac{A_{\rm Bi-210}}{A_{\rm Pb-210}} = 1.0006$$

$$\Rightarrow k_{\rm Po-210} \frac{A_{\rm Po-210}}{A_{\rm Pb-210}} = 1.0179$$

$$JU \, du \, LNHB/LMAI \, Matias \, RODRIGUES \qquad [5]$$

MESURE DE L'INTENSITÉ ABSOLUE

Efficiency GeHP1

DU GAMMA DE 46,5 KEV

• $j^{i}e^{me}$ intensité: $I_j(E) = \frac{n_j(E) \cdot C_T}{\mathcal{E}_{abs}(E) \cdot A}$

list

Ceatech

n: coups dans le PAT C_T : facteurs correctifs *A*: activité de la source ε_{abs} : rendement absolu

- Rendement total *ɛ_i* étalonné avec des sources étalons entre 6 and 136 keV
- discontinuité à 11 keV est problématiques pour les XL
 → Seulement les intensités XLγ et γ déterminés précisément

INTENSITÉ D'ÉMISSION GAMMA DE 46,54 KEV

Budget d'incertitude (%)				
Activité	1,0 %			
Rendement	0,9 %			
Comptage	0,3-0,5 %			
Facteurs correctifs	0,01 %			
Déconvolution	0,4 %			
Total	1,2 %			

Auteur	Intensité pour		
	100 dés.		
Cette étude	4,23 (5)		
Fink (1957)	4,5 (4)		
Ya Gromov et al. (1969)	4,8 (6)		
Hino and Kawada (1990)	4,26 (7)		
Schötzig (1990)	4,24 (5)		
Evaluated value, Chisté and Bé (2007)	4,252 (40)		

MESURE DES INTENSITÉS ABSOLUES DES GROUPES XL

HPGe2 ϕ = 16 mm, e = 10 mm $\Delta E_{\rm FWHM}$ = 320 eV @ 59,54 keV

 Rendement intrinsèque ε_{int} étalonné avec SOLEX

list

Ceatech

Intensité I_{Lγ} utilisée comme raie de référence pour L*ι*, Lα, Lη, and Lβ

• *J*th Intensité: $I_j = \frac{n_j}{n_{L\gamma}} \cdot \frac{\mathcal{E}_{int,L\gamma}}{\mathcal{E}_{int}} \cdot I_{L\gamma}$ *n* coups dans le PAT \mathcal{E}_{int} rendement intrinsèque

COMPARAISON DES INTENSITÉS D'ÉMISSION DES GROUPES LX

Raie	Energies	Ce travail	Calcul	Mehta, 1987	Schötzig,
Ou	(keV)	(HPGe)*	Bé, 2008	Bé, 2008	1990
groupe					
LI	9,42	0,518 (10)	0,552 (17)	0,584 (18)	0,55 (3)
Ls	9,72	-	-	-	-
Lt	10,24	-	-	-	-
Lα	10,83	9,49 (19)	10,3 (3)	10,27 (32)	9,48 (17)
Lη	11,71	0,087 (2)	0,075 (2)	0,074 (4)	0,075 (4)
Lβ	13,01	10,52 (21)	9,05 (13)	11,6 (4)	10,9 (4)
Lγ	15,32	2,320 (35)	1,97 (3)	2,64 (8)	2,36 (5)
Total		23,01 (44)	22,0 (5)	25,2 (3)	23,4 (4)

*Normalisées par rapport à $I_{L\gamma}$ obtenue avec HPGe1

Intensités publiées en accord avec Intensités mesurées par HPGe2 Intensités publiées en désaccord avec Intensités mesurées par HPGe2

JU du LNHB/LMA Matias RODRIGUES

9

SignalBruit
$$\Delta V \propto \Delta T = \frac{E}{C(T_0^n)}$$
 $\sigma_{\rm SFN} \propto \sqrt{F \varepsilon E}$, $\varepsilon = k_B T_0$ $n \ge 1$ $\sigma_{\rm TFN} \propto \sqrt{4k_B \cdot (T_0^2 \cdot C(T_0))}$ $\sigma_{\rm SQUID} \propto \sqrt{T_0}$

→ Basse température nécessaire pour haute résolution en énergie

DISPOSITIF EXPÉRIMENTAL

SMX3 avec 4 pixels

List DÉCONVOLUTION DU SPECTRE (1/2)

- Pour le spectre XL avec SMX3 :
- Fonctions de Voigt avec traîne à gauche

 \rightarrow Traîne due à la diffusion Compton dans le Be.

- Largeur instrumentale à mihauteur constante de 25,9 eV
- Largeur naturelle des raies X fixée (Campbell and Papp 2001)
- Pics déconvolués :
 - Raies diagrammes et satellites du Bi,
 - Raies X shake-off du Po et Pb,
 - Fluorescence du W et Pb

 \rightarrow avec une haute résolution, ce n'est pas plus simple mais plus juste...

JU du LNHB/LMA| Matias RODRIGUES

INTENSITÉS D'ÉMISSION INDIVIDUELLES

- $I_{j} = \frac{n_{j}}{n_{L\gamma}} \cdot \frac{\mathcal{E}_{int,L\gamma}}{\varepsilon_{int}} \cdot I_{L\gamma} \quad \bullet \quad \text{Rendement intrinsèque } \mathcal{E}_{int} \text{ déterminé par Monte Carlo} \\ \bullet \quad \text{Intensité } I_{L\gamma} \text{ utilisée pour normaliser les intensités individuelles LX}$

X-ray line (IUPAC)	Measured	Intensity relative to I _{Total-LX} (%)	Intensity relative to $I_{L\gamma}$ (%)	Group (Siegbahn)	Intensity relative to $I_{L\gamma}(\%)$
L3-M1	9438.2	2.609 (20)	0.595 (9)	Ll	0.595 (10)
L3-M2	9723.0	0.0356 (11)	0.00811 (22)	Ls	0.00811 (26)
L3-M3	10254.6	0.0320 (8)	0.00730 (17)	Lt	0.00730 (24)
L3-M4	10744.3	4.203 (18)	0.958 (15)		0.42(14)
L3-M5	10853.7	37.13 (18)	8.47 (13)	$ L\alpha $	9.43 (14)
L2-M1	11713.4	0.3573 (29)	0.0815 (13)	\Box L η	0.0815 (14)
L3-N1	12519.3	0.6332 (46)	0.1444 (24)		
L1-M2	- 12692.3	9.894 (25)	2.256 (34)		
L3-N4.5 –	13022.5	9.514 (24)	2.170 (33)		
L2-M4	- 13024.7	12.315 (30)	2.808 (43)		
L1-M3	13210.6	10.670 (25)	2.433 (37)		
L3-N6.7.	12244 4	0.0005 (14)	0.02065(42)	$- L\beta$	10.37 (16)
L3-01	13344.4	0.0903 (14)	0.02003 (42)		
L3-O4	121596	1 179 (7)	0.226 (5)		
L3-P1	13430.0	1.428 (7)	0.520 (3)		

Mesure possible des intensités de 26 raies X ۲

list

Ceatech

Pour les plus intenses, source d'incertitude intensité de $I_{L\gamma}$ et de l'atténuation du Be

COMPARAISON AVEC LES DONNÉES PUBLIÉES

Raie	Energie	Ce travail	Ce travail	Calcul	Mehta, 1987	Schötzig,
Ou	(keV)	(SMX3)*	(HPGe)*	Bé, 2008	Bé, 2008	1990
groupe						
LI	9,42	0,595 (11)	0,518 (10)	0,552 (17)	0,584 (18)	0,55 (3)
Ls	9,72	0,00811 (26)	-	-	-	-
Lt	10,24	0,00730 (24)	-	-	-	-
Lα	10,83	9,42 (24)	9,49 (19)	10,3 (3)	10,27 (32)	9,48 (17)
Lη	11,71	0,0815 (14)	0,087 (2)	0,075 (2)	0,074 (4)	0,075 (4)
Lβ	13,01	10,37 (16)	10,52 (21)	9,05 (13)	11,6 (4)	10,9 (4)
Lγ	15,32	2,320 (35)	2,320 (35)	1,97 (3)	2,64 (8)	2,36 (5)
Total		22,80 (35)	23,01 (44)	22,0 (5)	25,2 (3)	23,4 (4)

*la raie L γ obtenue avec HPGe1 est utilisé comme référence pour normaliser

Intensités en accord avec les mesures de SMX3 Intensités en désaccord avec les mesures de SMX3

→Bon accord → Valide l'utilisation de calorimètre magnétique

JU du LNHB/LMA| Matias RODRIGUES

Grâce à la combinaison de différentes techniques du LNHB

Scintillation liquide + spectromètre γ HPGe1

 → mesure de l'intensité d'émission absolue du γ 46.5-keV
 Iγ = 4.23 (5) pour 100 désintégrations
 en acccord avec les mesures les plus récentes

- Spectromètre HPGe2 + calorimètre magnétique SMX3

 → mesure des intensités des groupes des groupes LX
 → valide le développement et l'utilisation de calorimètre
- Calorimètre magnétique SMX3

→ premières mesure détaillées des intensités d'émission de 26 raies individuelles LX du Pb-210

Merci pour votre attention

Commissariat à l'énergie atomique et aux énergies alternatives Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142 91191 Gif-sur-Yvette Cedex - FRANCE www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019