

Gamma- and X-ray spectrometry setup with very low background at LNE-LNHB

Laboratoire National LINHB Henri Becquerel

The Laboratoire National Henri Becquerel (LNE-LNHB) has a gamma- and X-ray spectrometer used to provide environmental laboratories with radioactive standards. This facility is installed in the LNHB building basement under 65 cm of soil and 75 cm of barium concrete (density 2.3 g.cm⁻³). The measuring system consists of a 198 cm³ coaxial N-type HPGe detector with a relative efficiency of 51.6% with a combination of passive and active shielding to reduce the detection background, and consequently, to improve the detection limits.

Shielding characteristics for reducing the background

Passive shielding from outside to inside:

- 10 cm low activity lead: 99.23% attenuation of 3-MeV external gamma rays
- 3 mm cadmium alloy: neutron absorber whose stable isotope ¹¹³Cd has a giant resonance of 10 000 barns for thermal neutrons
- 5 cm of very low activity lead: attenuation of the gamma radiation emitted by neutronactivated cadmium. The two layers of lead makes it possible to attenuate the 3-MeV gamma-rays by 99.93%

Active shielding using plastic scintillators (cosmic veto)

- Each external side of the lead cell (except the one under the detector) is covered with 5-cm thick plastic detector (Type BC-408) whose light signals are collected by a photomultiplier (PMs)
- The signals from the PMs are summed and amplified before being processed by the electronics developed at LNE-LNHB which apply a veto using an extendable dead time (Applied Radiation and Isotopes (2015) 109, 425-429).

4 mm copper: 93% attenuation of lead X-rays around 80 keV

Removal of radon from the measuring cell

The detector cell is flushed with gaseous nitrogen from the detector Dewar[®] (30 L.h⁻¹). This permanent nitrogen injection avoids waiting for the total renewal of the inside atmosphere of the cell after it has been opened (1 h with nitrogen evaporated from the Dewar[®]).

Shielding effects

- Blue spectrum: background without any shielding, with strong presence of all the peaks characteristic of natural radioactive decay chains (²³⁸U, ²³⁵U and ²³²Th) and of ⁴⁰K.
- Green spectrum: addition of passive shielding (except copper) allows reduction of the background by a factor of 140. In this spectrum, the K X-rays from lead and the 511-keV peak with a continuous contribution due to the interaction of cosmic radiation with the lead of the shielding are still present.
- Red spectrum: veto active shielding eliminates a large part of the cosmic radiation and reduces the previous background by a factor of 6.
- Black spectrum: removal of radon from the measuring cell with nitrogen flush induces reduction of the previous background by a factor of 2. The average activity concentration of ²²²Rn measured over 1 year is 25 Bq.m⁻³, the highest activity recorded being 80 Bq.m⁻³.
- NOTE: The LNE-LNHB's electronics have made it possible to reduce the total background by a factor of 2 and the peak of 511 keV by a factor of 5 compared with the electronics initially provided when the detector was installed.

The saturating peaks have also been eliminated from the spectrum.

If it is thick enough, the internal copper shielding removes all lead X-rays. However, as shown on the pictures, it should only be used if the *veto* system correctly eliminates the 511-keV contribution:

- Left panel: effect of copper (in red) without cosmic veto: a tail appears due to the interaction of the 511 keV in the copper layer,
- Right panel: effect of copper (in red) with the cosmic veto, the tail is no more visible because the 511-keV emission is almost completely eliminated by the veto.

Background results

benoit.sabot@cea.fr

Origin	Energy (keV)	h ⁻¹ .kg _{Ge} -1	Origin	Energy (keV)	h ⁻¹ .kg _{Ge} -1	
⁷⁰ Ge(n,γ) ^{71m} Ge	23.4	-	²²⁸ Ac	338.3	0.15	
²¹⁰ Pb	46.5	1.08	²¹⁴ Pb	351.9	1.36	
²¹⁴ Pb, ⁷² Ge(n,γ) ^{73m} Ge	53.2 - 53.4	1.30	Annih.	511.0	1.69	
²³⁴ Th	63.3	1.04	²⁰⁶ Pb(n,n',γ) ^{206*} Pb	537.4	-	
^{73m} Ge (13.3 keV + 53.4 keV)	66.7	1.02	²⁰⁷ Pb(n,n',γ) ^{207*} Pb	569.7	0.14	
⁷³ Ge(n,n',γ) ^{73*} Ge	68.7	-	²⁰⁸ TI	583.2	0.54	
Pb-X _{KL}	72.1 - 72.8	-	⁷⁴ Ge(n,n',γ) ^{74*} Ge	595 - 650	-	
Pb-X _{KL} , ²¹² Pb, ²¹⁴ Pb	75.0	0.43	²¹⁴ Bi	609.3	1.53	
²¹² Pb, ²¹⁴ Pb	77.1	0.79	¹³⁷ Cs	661.7	0.48	
Pb-X _{KM}	84.1 - 85.5	0.18	⁷² Ge(n,n',γ) ^{72*} Ge	680 - 740	-	
Pb-X _{KM} , Pb-X _{KN} , ²¹² Pb, ²¹⁴ Pb	87.1 - 87.9	0.14	⁷⁶ Ge(n,n',γ) ^{76*} Ge	691.0	-	
²³⁴ Th	92.6	1.43	²¹⁴ Bi	768.4	-	
⁷⁴ Ge(n,γ) ^{75m} Ge	139.7	0.24	²⁰⁶ Pb(n,n',γ) ^{206*} Pb	803.3	0.05	
²³⁵ U	143.8	0.14	²³⁴ Pa	880.5	-	
⁷⁶ Ge(n,γ) ^{77m} Ge	159.7	-	²²⁸ Ac	911.1	0.21	
^{71m} Ge	175.0	-	²¹⁴ Bi	934.1	-	
²³⁵ U, ²²⁶ Ra	185.7 - 186.2	1.27	²²⁸ Ac	968.9	-	
⁷⁰ Ge(n,γ) ^{71m} Ge	198.3	0.98	²¹⁴ Bi	1120.3	0.15	
^{77m} Ge	215.5	-	⁶⁰ Co	1173.2	-	
²¹² Pb	238.6	0.37	²¹⁴ Bi	1238.1	0.11	
²¹⁴ Pb	241.9	0.23	⁶⁰ Co	1332.5	-	
²⁰⁸ TI	277.4	-	⁴⁰ K	1460.8	0.81	
²¹⁴ Pb	295.2	0.85	²¹⁴ Bi	1764.5	0.08	
			²⁰⁸ TI	2614.5	0.38	
List of peaks present in the background, t = 2 500 000 s						

The result tables present the different counting rates obtained during a background acquisition, the dead time was 0.5 (3) % coming mainly from the *veto*, we observe:

- Radionuclides in the natural chains of ²³⁸U, ²³⁵U and ²³²Th that come from lead in the cell, radon progenies and detector materials;
- Some of the lead X-rays that pass through the copper, their elimination would be complete by increasing the

thickness of the copper to 12 mm;

- Neutron interactions: some neutrons have not been absorbed by cadmium (need to add more cadmium or boron);
- The cell or the detector presents a light contamination (some µBq of ¹³⁷Cs) that appeared after 16 years of operation; this shows the sensitivity of such an installation, a regular cleaning and a containment of the sources make it possible to limit these problems.

Values with a " - " indicate that these emissions are not visible on	the
spectrum: no 60Co peak visible after 2 months of cumulative backgrou	nd.

A finer tuning of the electronics should allow to improve the results. However, this is a time-consuming testing process which requires background measurements after each tuning. This is carried out according to the availability of the installation.

Energy (keV)	h ⁻¹ .kg _{Ge} ⁻¹	min ⁻¹ .kg _{Ge} ⁻¹			
15 - 3300	244.8 (6)	4.07 (1)			
15 - 1600	222.5 (6)	3.70 (1)			
20 - 2500	233.9 (6)	3.90 (1)			
40 - 2500	220.5 (6)	3.68 (1)			
15 - 100	58.6 (3)	0.977 (5)			
100 - 400	86.4 (4)	1.441 (6)			
400 - 1400	71.4 (4)	1.190 (6)			
1400 - 2500	19.8 (2)	0.330 (3)			
2500 - 3300	8.5 (1)	0.142 (2)			
Background for some energy ranges					

CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), Bât 602, PC111, CEA Saclay 91191 Gif-Sur-Yvette Cedex, France