X-ray fluorescence analysis techniques

The X-ray Reflectivity (XRR) and Grazing Incidence X-Ray Fluorescence (GIXRF) analysis techniques make it possible to characterize in depth samples of new nanostructured or thin-film materials used in various fields of applications: power electronics, solar photovoltaic energy, energy-efficient windows. This characterization is carried out by varying the angle of incidence of radiation on the sample and recording the reflected beam and/or the fluorescence emitted.
The specificity of the materials studied, in terms of dimensional structure and chemical composition, is a challenge for analytical methods. To answer this question, the X analysis methods (XRR, GIXRF, etc.) are used to gather as much information as possible (dimensional and structural) on the sample parameters.
The LNHB is developing these techniques and their implementing is carried out on the metrology beamline of the SOLEIL synchrotron, using a dedicated goniometer. The analysis of experimental data includes the detailed processing of fluorescence spectra with complex structure by mean of our Colegram software. All results must be processed using simulation codes in order to determine the parameters studied (element distribution profile, quantity deposited, density, chemical status, etc.).

– Y. Ménesguen, B. Boyer, H. Rotella, J. Lubeck, J. Weser, B. Beckhoff, D. Grötzsch, B. Kanngießer, A. Novikova, E. Nolot and M.-C. Lépy “CASTOR, a new instrument for combined XRR-GIXRF analysis at SOLEIL” (2016)
DOI : 10.1002/xrs.2742
– H. Rotella, B. Caby, Y. Ménesguen, Y. Mazel, A. Valla, D. Ingerle, B. Detlefs, M.-C. Lépy, A. Novikova, G. Rodriguez, C. Streli, E. Nolot “Elemental depth profiling in transparent conducting oxide thin film by X-ray reflectivity and grazing incidence X-ray fluorescence combined analysis” (2017) Spectrochimica Acta Part B, 135, 22-28
DOI : 10.1016/j.sab.2017.06.011
– W. Pessoa, A. Roule, E. Nolot, Y. Mazel, M. Bernard, M.-C. Lépy, Y. Ménesguen, A. Novikova, P. Gergaud, F. Brigidi, D. Eichert “Grazing incident X-ray fluorescence combined with X-ray reflectometry metrology protocol of telluride-based films using in-lab and synchrotron instruments” (2018) Spectrochimica Acta Part B, 149, 143-149
DOI : 10.1016/j.sab.2018.07.003

Metrology of fundamental parameters

At the same time, metrological aspects are studied to ensure the quality of quantitative results. In particular, measurements of atomic parameters (mass attenuation coefficients, fluorescence yields) shall be carried out for the elements of interest and the values obtained compared with the values used in the calculation codes, and may be incorporated into them.
The experimental results of mass attenuation coefficients are available here: http://www.nucleide.org/Laraweb/Mu

– Y. Ménesguen , M.-C. Lépy, P. Hönicke, M. Müller, R. Unterumsberger, B. Beckhoff, J. Hoszowska, J.-C. Dousse, W. Błachucki, Y. Ito, M. Yamashita and S. Fukushima, “Experimental determination of the x-ray atomic fundamental parameters of nickel” (2018) Metrologia 55, 56-66
DOI : 10.1088/1681-7575/aa9b12
– Y. Ménesguen, M.-C. Lépy, J. M. Sampaio, J. P. Marques, F. Parente, M. Guerra, P. Indelicato and J. P. Santos “Experimental and theoretical determination of the L-fluorescence yields of bismuth” (2018) Metrologia, 55, 621-630.
DOI : 10.1088/1681-7575/aad1d6
– Y. Ménesguen, M. Gerlach, B. Pollakowski, R. Unterumsberger, M. Haschke, B. Beckhoff and M.-C. Lépy “High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range” (2016) Metrologia, 53 (1), art.n° 7
DOI : 10.1088/0026-1394/53/1/7

– ThinFilms (Traceable characterisation of thin-film materials for energy applications) – Website: http://projects.npl.co.uk/optoelectronic_films/
– ThinErgy (Traceable characterisation of thin-film materials for energy applications) – Website: http://www.ptb.de/emrp/thinergy.html
– 3DMetChemIT (Advanced 3D chemical metrology for innovative technologies) – Website: http://empir.npl.co.uk/3dmetchemit/
– Hymet (Hybrid metrology for thin films in energy applications)- Site : https://www.hymet.ptb.eu/
– Industrial projects REXDAB and REXDAB2

Institutional: PTB (Germany), Kyoto University (Japan), Freibourg University (Switzerland)